TRW DEFENSE AND SPACE SYSTLMS GROUP REDONDO BEACH CALIF F/G6 9/2

AD=AU49 473

SEMANOL (76) REFERENCE MANUAL. VOLUME II,(U)

NOV 77 F C BELZ F30602=76=C~ 0233 |
UNCLASSIFIED RADC=TR=77=365=VOL=2

o

ol
L

= & M gy
i i e
fleL = = 2
——_e

io
01

22 s s

- MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

i e N

ADA049473

A%c FILE COPY.

RADC-TR-77-365, Vol II (of four)
Final Technical Report
November 1977

SEMANOL(76) REFERENCE MANUAL

F. C. Belz

TRW Defense and Space Systems Group

Approved a'for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER

Air Force Systems Command
Griffiss Air Force Base, New York

13441

DDC
(2N e

J

O

LEEUU G

This report has been reviewed by the RADC Information Office (0I) and is
releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the genmeral public, including foreign nations.

RADC-TR-77-365, Vol II (of four) has been reviewed and approved for
publication.

APPROVED:

JOHN M. IVES, Captain, USAF
Project Engineer

APRROVED: Gy X /3

ALAN R. BARNUM, Assistant Chief
Information Sciences Division

FOR THE cmnaniiz-_/w i %M/

JOHN P. HUSS
Acting Chief, Plans Office

1f your address has changed or if you wish to be removed from the RADC mailing
1ist, or if the addressee is no longer employed by your organization, please
notify RADC (ISIS) Griffiss AFB NY 13441. This will assist us in maintaining

a current mailing list.

Do not return this copy. Retain or destroy.

ﬂ’,:r_tp‘f ‘/6(:3;/

;:

& UNCLASSIFIED

& AS!CURITV CLASSIFICATION OF THIS PAGE (When Date Entered)

g REA S S
F | REPORT DOCUMENTATION PAGE B, gt *
L ¥ . REPORY NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

: [RADQLTR-77-365, Vol I (of four) |

‘ d . TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Final 1%chnical xé
G.

lo SEMANOL(76) REFERENCE MANUAL, \/olure T,

¥ 1 2
g - N/A {4
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) 1
JO) F. c./Belz 15 Y F3g6h2- 76-C-H238 // ! ‘
e tq
9. PERFORMING ORGAN{ZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
TRW Defense and Space Systems Group o A —
: One Space Park 63728F Q j
E Redondo Beach CA 90278 J.0. 55540840 ‘
4 | 11. CONTROLLING OFFICE NAME AND ADDRESS " 12 EP !i
{ Rome Air Development Center (ISIS) Nov AN 7 7) _Z a E—__,]
2 Griffiss AFB NY 13441 g s !
122
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED (3
Same 1Sa. ECESIE-I;SIS_IEHCAﬂON/DOWNGRAD'NG | 3
N/A ’ 1
16. DISTRIBUTION STATEMENT (of this Report) i
)
v Approved for public release; distribution unlimited. |

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Captain John M. Ives (ISIS)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

SEMANOL standardization
SEMANOL (76) language control ;
semantics metalanguage
—~J] syntax interpreter
anguage definition
; ¥ 20. TRACT (Continue on reverse side If necessary and identify by block number)

SEMANOL(76) is a metaprogramming language designed specifically for use in
writing formal, operational, specifications of the syntax and semantics of
contemporary programming languages. The SEMANOL(76) Reference Manual provides 3
a detailed description of the metaprogramming language. The context-free synta i
is given in the SEMANOL(76) notation, while the context-sensitive constraints ﬁ
and semantics are given by prose text. This manual does not explain how
SEMANOL(76) ought to be used when writing formal specifications.

DD | 5i'ss 1473 EDITION OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED \ ;

SECURITY CLASSIFICATION OF THIS PAGE\(When Data Entered)

489 ¢3)

i ¢ o A T
¥ ek, il N DR e

-

| ——

-g'
4

o
g
¥
|
2
¥

PRRE e wn

CONTENTS

Introductian. . « .« ¢ « ¢ b . e

General Overview . . . « . . .

A.
B.
C.
D.
E.
F.
G.
H.

SEMANOL(76) program structure

Evaluation description. . .
SEMANOL(76) Data Types. . .
Global assignment sequence.
SEMANOL(76) Names

Sequences and parse trees .
SEMANOL(76) Execution rules

SEMANOL(76) Arithmetic. . .
(1) Standard form numerals

-- general.

(2) Sign-magnitude notation.
(3) General Notes on Arithmetic.

SEMANOL(76) Iterators . . .
SEMANOL(76) Parameters. . .

Description of SEMANOL(76). .

FOPMaks < ' o isi s o to e m 4 %
Conventions and notation. .

Definitions . . .

SEMANOL (76) Program Structur

peclaratlions. « « s« » % » .«
Control Statements. . .
Syntactic Definitions .
Semantic Definitions. .

Appendix Ao

I.
II.

1

' III.
[T
L)

; 508

il
>ﬁ.mm;x<
Bult Secties [

0

12Ty mae
LITY faoes

wid, o SECIAL

e

.

.

e e o o

e o o o o o

|

SEMANGCL(76) Reference Manual

I. Introduction

I. Introduction

This manual is a description of the semantic definition
metalanguage known as SEMANOL(76). It is intended to be as
complete and precise a description of SEMANOL(76) as can ¢bte
achieved wusing English. It is not a tutorial; it presupposes
considerable familiarity with the underlying ideas of
SEMANOL(76).

The presentation is in a "top-down" sequence -- manv
structures are defined in terms of structures not yet defined;
thus it 1is intended for use by experienced (or at least well
versed) SEMANOL(76) programmers.

The manual itself consists of three chapters, including
this Introduction. Chapter II consists of a basic description
of the elements of SEMANOL(76) programs. Details regarding the
Translator conventions will be listed here as well.

Chapter III consists of the full SEMANOL(76) language
description. The grammar will be wused as a guide to che
development of the chapter. Thus it is again assumed that the
reader has basic familiarity with the SEMANOL(76) notation for
grammars.

i i ittt G & " it S CURIREN IUPRETW

SEMANOL(76) Keference Manual

II. General Overview 1

-
i

II. General Overview

A. SEMANOL(76) program structure

A SEMANOL(76) program may contain four sections, each
consisting of a sequence of basic constructs.

The Declarations section consists of a collection of
declarations, by which Syntactic components and Global
E | variables can be identified. ;

The Context free syntax section contains a collection of
Syntactic definitions, which are used to specify an (almost)
context free grammar for a language (i.e. a set of strings)
over the ASCII character set. Actually, several possibly _
independent grammars can be included in this section. Each i3
syntactic definition serves to identify a set of strings with a L
syntactic class name, which can then be used in several ways in 3
SEMANOL(76). Any syntactic class name may be used as the start ‘
symbol for a grammar. |4

The Semantic definitions section contains Semantic » |
definitions, which are operationally similar to function
declarations in other programming languages. Semantic
definitions consist of a Semantic definition name followed by
an optional Dummy parameter 1list followed by a Semantic
definition body. A semantic definition may be "functional" or
"procedural™; i.e., it specifies the selection of a SEMANCL(76)
expression which 1is to be evaluated (functional), or it
specifies a sequence of Statements which are to be executed in
order (procedural). Semantic definitions may be directly or
indirectly recursive.

The Control section contains a list of statements exactly
like those in procedural semantic definitions; the statements
are to be executed in order. Statements may contain semantic
definition references within them -- in most reasonable
SEMANOL(76) programs at least one statement will have such an
imbedded reference. At least one such statement must appear
here to begin the interpretation. 1In practice, several are v
used to specify the major steps in the interpretation of a
i 1 program in the object language.

SEMANOL(76) Reference Manual

II. General Overview

B. Evaluation description

The evaluation of a SEMANOL(76) program can be described on
a formal or symbolic basis; i.e., the SEMANOL(76) operations
are performed on certain constants for underlying objects,
producing new constants standing for other objects. '

In this manual, a less formal description method is used in
which evaluation 1is described as the process of scanning the
text of the SEMANOL(76) program and producing objects which
serve as the values of expressions.

For example, the SEMANOL(76) expression "a #CS b" where a
and b are SEMANCL(76) expressions would be evaluated as
follows: evaluate a -- i.e. create the object, &, specified by
a; evaluate b similarly; evaluate #CS by finding the sequence
concatenation operator denoted by #CS and applying it to a and
b to form a resultant object, say &@.

If the expression x is a primitive constant then the value,
X, of x is the object,
%, denoted by the constant.

[NOTATION: The "hat", ", symbol is used to designate
the object or function or relation denoced by a constant, and
the "tilde", ~ , 1is wused to designate the value of an
expression. However, we may also write of the
function, £, using the phrase: the "x" function.]

SEMANOL(76) programs are executed. The process of execution
associates values with expressions in the SEMANOL(76) program.

SEMANOL(76) expressions are built up from object, function,
and relation constants, and names, with precedence rules
implied in the normal manner by the official SEMANOL(76)
grammar.

SEMANCL(76) syntactic expressions are used to form context
free grammars, and are discussed elsewhere.

SEMANOL(76) semantic expressions are evaluated in the
manner described below:

The simplest expressions consist of object constants or
names alone. The evaluation of a name depends upon whether the
name is a syntactic definition name, a semantic definition
name, a declared global variable name, a dummy parameter name,
or a dummy variable name. Syntactic definition names can only
appear in more complex semantic expressions (keyword

3

f SEMANOL(76) Reference Manual

II. General Overview 8
expressions, discussed below) and the semantics of their r
evaluation depends upon the keyword expression in which they &
appear.

Semantic definition names may appear with or without an
actual argument expression list, and are termed "semantic def . ;
E calls", "#PROC-DF calls", or "#DF calls"; evaluation of such i1
‘ calls is analogous to function calls in most algebraic
languages and is discussed in Chapter III in the discussion of
Semantic-definitions.

The evaluation of a declared global variable name, x, in a [4
semantic expression is synonymous with the evaluation of
E | "#LATEST-VALUE('x')"; 1i.e., the result value 1is the latest
E | value assigned to "x" in the global assignment sequence (see |
Section D, "Global assignment sequence", below).

The evaluation of a dummy parameter name (of a semantic
definition) produces as a result the value of the
corresponding actual argument expression in the invoking
3 semantic def call (see the discussion of Semantic-definitions
k. in Chapter I1I1I1).

k| Dummy variable names appear in the scope defined by a
high-level-iterator, discussed below. The value of any such

dummy name (upon evaluation of the expression in which it
appears) 1is determined by the semantics of the specific .
high-level-iterator, as discussed in detail in Chapter III.

Also see the last paragraph of this section.

2 In addition to names, a SEMANOL(76) expression may include
function constants, which are function keywords such as "+",
non nEn_ mypARS" #TH-ELEMENT-IN", etc.; each denotes a
specific function which has a certain number of arguments, and
these arguments are represented in the SEMANOL(76) program by
(sub)expressions called "operand expressions" of the function
keyword or operator constant.

Each step in the evaluation of a complicated expression
involves the application of one function constant to its
operand expressions. We call the expression being evaluated at
this step a keyword expression.

Normally, the rule for evaluating a keyword expression is
the call-by-value rule discussed above. That is, the operand)

expression(s) are evaluated, 1left - to - right, creating
i argument(s) as value(s); the function denoted by the function
Ei keyword is applied to the argument(s), yielding a new object as
k! the result value of the keyword expression.
|

f } SEMANOL(76) Reference Manual | : y
|

II. General Overview

Some keywords are evaluated in a (partial) call-by-name
E . fashion -- these include the high-level-iterator keywords. In
i these cases, one of the operand expressions (usually the last) :
[is passed to the function as an argument -- the operand !
i . expression 1is not evaluated first. Then the function itself :
f may call for evaluation of the operand expression or some | 4
i modified version of it.

C. SEMANCL(76) Data Types

The objects which can be values of SEMANOL(76) expressions
may be partitioned into five classes called Primary data types:

¥ -Boolean objects: <true> and <false>;
-Undefined objects: <undefined>;

-String objects;

-Sequence objects;

~Parse tree or Node objects;

Boolean, undefined and string objects are said to be
unstructured or simple objects; sequence and parse tree objects
are said to be structured objects. The elements of a sequence
‘ may be objects of any type; the parse tree objects are
P constructed of Nodes, and any parse tree 1is uniquely

represented by its Root node. Furthermore, any node is the
root node for some unique parse tree. Thus to say that an
object 1is a parse tree is in some sense equivalent to saying
that the object is a node. The SEMANOL(76) interpreter
represents a parse tree by its root node.

In addition, there are two SEMANOL(76) functions, <stop>
] and <error> (denoted by #STOP and #ERRCR), which when invoked
during evaluation, cause evaluation to stop; in the case of
<error>, an error message is written on a standard output file.
We will sometimes speak of expressions denoting or producing
the value <error> (or <stop>) which is the same as saying that
the function <error> (or <stop>) is invoked in the evaluation

process.

T
TR
s

Since the evaluation of expressions causes the construction
of objects from the above five data types, expressions are said
to have the type of the object which is created upon their
evaluation. Thus we may speak of "string expressions", etc.

SEMANOL(76) Reference Manual

II. General Overview

The classification of SEMANOL(76) objects into primary data
types 1is based upon the SEMANOL(76) functions. Every function
accepts O or more arguments, each an object of one of the data
types. A function constant 1is said to accept its operand
expressions iff its function accepts the arguments obtained by
evaluating the operand expressions.

In many cases, if a function accepts an object of type a as
its n-th argument, it will not accept an object of type b (b
not equal to a) as that argument. This rule is relaxed in
certain cases. Some functions will accept arguments of any
type. Others will nominally accept only string arguments-- for
these, however, node arguments are accepted by convention, and
the operator denoted by the keyword "#STRING-OF-TERMINALS" is
implicitly applied to convert the node to its string of
terminals before evaluation of the function itself.

Certain functions will accept only a subset of the strings
-- those having a certain (numeric) syntax. Thus a collection
of secondary data types (or syntactic or numeric data types) is
induced:

-Bit string;

-Integer numeral;

The allowable syntax for members of each data type is given
in Chapter III. Certain function constants will accept only
bit-string expressions (e.g. #BOR, #BXOR), others will accept
only integer expressions (e.g., +, -, #SUBSTRING-OF-CHARACTERS
m #T0 n #OF s (for operand expressions m and n), etc.

<error>

Each function has 0 or more arguments and, given those
arguments, produces an object of one of the data types listed
above. Each operator accepts for each argument a SEMANOL(76)
object from one of the data types listed above. If during the
execution of a SEMANGCL(76) program, an object is used as an
argument and the object is not of the correct type, the
operator does not accept the argument and produces the value
<error>, which causes immediate termination of the execution of
the SEMANOL(76) program.

The keyword #CONTEXT-FREE-PARSE-TREE will accept as its
first operand any SEMANOL(76) expression denoting a string, and
as its second operand a Syntactic class name which is the start

SEMANOL(76) Reference Manual

II. General Overview

symbol for an unambiguous grammar. However, it is impossible
to test the grammar for ambiguity a priori; therefore, a
grammar can be established as ~mbiguous only when a parse is
attempted for the given string; in this case the keyword
expression evaluates to <error>. For a different given string
the same grammar may provide for an unambiguous parse; in this
case the operator constructs the parse tree which results from
the parse. For another string, the same grammar may admit no
parse at all; in this case the result would be <undefined>.

D. Global assignment sequence

An executing SEMANOL(76) program can manipulate a structure
called the Global assignment sequence which can be thought of
as a sequence of pairs (3,¥), where 3 is a string called the
receiving string (or global SEMANOL(76) variable) and ¥V is a
value of any legal SEMANOL(76) data type. The primary
operators which manipulate the global assignment sequence are
denoted by #ASSIGN-LATEST-VALUE(s,v), and #LATEST-VALUE(s).

The value of the expression "#ASSIGN-LATEST-VALUE(s,v)" is
the empty string; as a side effect of the evaluation of this
keyword, the pair (§,¥) 1is added to the global assignment
sequence.

The value of "#LATEST-VALUE(s)" is the ¥V in the first pair
(3,V) found on a reverse order search through the global
assignment sequence at the time of evaluation of the keyword.
If the search fails to find such a pair, the value is
<undefined>.

Note that the "receiving string" may be designated by any
SEMANOL(76) string expression. Thus, the set of receiving
strings employed in the execution of a SEMANOL(T73)
specification may not be fixed at the start of execution;
during execution, new ones may be constructed whose form depend
upon the object program and its input.

An abbreviation for the two basic assignment operators is
available in SEMANOL(76), using declared global variables. A
receiving string which has the syntax of a SEMANOL(76) name may
be declared a global variable. Such a name must appear in a
"#DECLARE-GLOBAL" declaration. Then it may appear 1in a
(semantic) expression; it may also appear as the assigned-to
variable immediately after the "#ASSIGN-VALUE!" of a
SEMANOL(76) assignment statement.

If a declared global variable name (say x) appears in any

e A e il

e s ia e e - T T ; —— . . "ﬁ T ———

SEMANOL(76) Reference Manual

II. General Overview

semantic expression it 1is an abbreviation for the semantic
expression "#LATEST-VALUE('x')". The statement "#AS3IGN-VALUE!
X = semantic-expression" is an abbreviation for the statement
"#COMPUTE! #ASSIGN-LATEST-VALUE ('x', semantic-expression)".

The following points should be noted: s

-Writing a declared global variable is then a matter
of writing the receiving string itself, rather than a
SEMANOL(76) expression whose value is the string.

-When the declared global variable mechanism is being
used, two methods may be used interchangeably to
establish the latest value: (1) writing the declared
global variable alone, or (2) using the #LATEST-VALUE
keyword with the receiving string enclosed in primes.

~Thus in the SEMANOL(76) expressions below:
" 'AB' #CW 'CD' " denotes the string "ABCD";

" 'AB' {#CW CD " denotes the string "ABEF" if CD is a
declared global variable and #LATEST-VALUE('CD')
denotes the ‘striing “EFE"™ (i.e., iff " VYAR® #CW
#LATEST-VALUE('CD') " denotes "ABEF").

~When the declared global variable mechanism is being |
used, setting a new latest-value for a given f
receiving string may be done either (1) via the
"#ASSIGN-VALUE!..." statement (writing the declared

global variable itself as the receiving string) or

(2) via the "#ASSIGN-LATEST-VALUE" keyword expression

with the receiving string in string quotes (or

denoted by a more complicated string expression).

Note that method (1) may only be used in procedural

semantic definitions or in the control commands

section, while method (2) may be wused in any

SEMANOL(76) expression. This limitation, as well as

the need to know the receiving string a priori,

tends to limit the use of declared global variables

to retaining control related information which is

independent of individual object programs.

-The use of declared global variables is subject to
certain context-sensitive syntactic constraints in a
SEMANOL(76) program: the variable names must not
conflict with any other names (see SEMANOL(76)
names) . The purpose of the "#DECLARE-GLOBAL"
declaration is to identify the variable name as a

SEMANOL(76) Reference Manual

II. General Overview

declared global variable name, thus facilitating the
process of distinguishing it from a parameterless
semantic definition name.

The global assignment sequence is completely independent of
2ll 1local variables (see Section E. "SEMANOL(76) names",
below). Thus, no variables with a local name (e.g., dummy
variables of high-level-iterators) can ever be explicitly
assigned a value via the "#ASSIGN-VALUE!..." or
"#ASSIGN-LATEST-VALUE..." operators.

E. SEMANOL(76) Names

A unique name must be used for each syntactic and semantic
definition name and declared global variable name. Definition
and global variable names are collectively called global names.
Each global name can be given to at most one of the definitions
and global variables.

Names used for semantic definition dummy parameter names
and for dummy variable names in such things as "#FOR-ALL..."
loops are called local names. The set of local names must be
distinct from the global names.

Each dummy parameter and dummy variable has a scope. For
example, the scope of a semantic definition dummy parameter
begins with "#DF" and ends with the closing "#." of the
definition. The scope of a "#FOR-ALL..." statement dummy
variable is the <Compound-statement>.

The same local name cannot be wused for any two dummy
parameters or variables which have overlapping scopes.
Otherwise, local names need not be distinct.

The global assignment sequence is completely independent of
all 1local variables. Thus, no variables with a local name
(e.g., dummy variables of high-level-iterators) can ever be
explicitly assigned a value via the "#ASSIGN-VALUE!..." or
"#ASSIGN-LATEST-VALUE..." operators.

F. Sequences and parse trees

The structured objects called sequences are of a very
general nature: their elements can be objects of any allowable
SEMANCL(76) data type, including sequences. However,
SEMANOL(76) sequences may not be re-entrant (i.e., none of the
sequence elements of a sequence may be the sequence itself, nor

kit

SEMANOL(76) Reference Manual

II. General COverview

may any elements of the (sequence) elements of the sequence be ’
the sequence itself,... etc.).

Suppose: two separate evaluations produce ¥ and §, each of
which 1is a sequence. If "#LENGTH(x) = #LENGTH(y)" and "i
#TH-ELEMENT-IN(x) #EQ i #TH-ELEMENT-IN(y)" for all i such that
"1 <= 1" and "i <= #LENGTH(x)", then ¥ is identical to ¥. That é
is, the identity of a sequence is completely determined by the ‘
order and 1identity of its components. Here the notion of |
identity 1is defined in terms of the SEMANOL(76) operators for
equality (the node-, sequence-, string-, and numeric-equality
relations). |

Every SEMANOL(76) parse tree is uniquely represented by its |
root node; however, parse trees are not necessarily disjoint. 4
A parse tree 3@ "includes" parse tree B if every node contained f
in B 1is contained in &. Also & "properly includes" B if &
includes B and there is some node contained in & but not in Bb.
A parse tree is "most-inclusive" if it is not properly included
in any parse tree. All most-inclusive parse trees are disjoint
(they contain no nodes in common); any two (sub)trees, & and b, .j
both included in a most-inclusive tree, have the property that
either & properly includes B or B properly includes 3 or 3 is
identical to b. | 4

Each result of the "#CONTEXT-FREE-PARSE-TREE"™ function is ,
(the root-node of) a unique most-inclusive parse tree; given : .
any node in a most-inclusive parse tree, any other node in the !
tree can be obtained by composing certain SEMANOL(76)
functions. Any node is the root node of a parse tree (possibly
a subtree of a most-inclusive tree), and corresponds to a
particular string in a set defined in the context-free syntax
section; that string can be obtained via the
"#STRING~-OF-TERMINALS-OF" function.

G. SEMANOL(76) Execution rules -- general

Execution of a SEMANOL(76) program begins with the first |
statement in the Control section. When execution of that
statement is completed the next sequential statement is
executed; execution proceeds 1in this sequence unless the
instruction list is exhausted, in which case execution]
terminates, with a standard error message. i q

Each statement is executed according to the semantics |
specified in Chapter III of this manual. Normally this will ® |
involve the evaluation of a SEMANOL(76) expression; the precise |

| rules of construction for SEMANOL(76) expressions and rules of

10

!
i
|
i
5

SEMANOL(76) Reference Manual

II. General Overview

evaluation are given in Chapter 1III also. (A general
discussion appears 1in this chapter, Section B, "Evaluation
description", above.)

SEMANOL(76) Arithmetic

Certain arithmetic functions are performed on numeric
(string) values to produce new numeric values. It is important
to note that the argument and result objects are always
strings, albeit strings with a special syntax (as described in
Section "SEMANQOL(76) Data Types" above). However in many
cases they may be thought of most naturally as numbers (for
example, "37 + 21" evaluates as follows: construct the argument
strings "37" and "21" and apply the "+" operator, which
produces the result value--also a string--"58").

Numerals must be strings which satisfy the syntax given in
Chapter III for <Numeric-constant>. Integer numerals consist
of an "integer ©portion" possibly followed by a base suffix.
(Negative integer numerals have a leading minus sign.)

Bit string numerals consist of a (binary) "integer portion"
followed by a "#BITS" suffix.

Each integer arithmetic operator produces, as a result, an
integer numeral of base 10, 8, or 2. To define these operators
uniquely, a standard form numeral must be defined for each of
these classes, which 1is the form of all result values of the
arithmetic operators.

(1) Standard form numerals

A non-zero numeral string is in standard form if the
leading zeros are suppressed in the constant.

Standard form zeros are:
Integers

0

0#B8

0#bB2

1

WG TSR

|
|
|

SEMANOL(76) Reference Manual

II. General Overview

(2) Sign-magnitude notation

The arithmetic operations can be defined formally as string
operations, but we shall use a less formal means in this
manual, referring to the underlying numbers obviously denoted
by the SEMANOL(76) numeral strings. Sign-magnitude notation
(with explicit "-" sign) is used for SEMANOL(76) numerals.

At the risk of belaboring the obvious, the rules for
defining the number, X, named by an numeral x, are given in the
next two paragraphs.

The number associated with any integer "Xn:::X1X0" is given
by the polynomial Xn¥*b!n+...+X1¥(b) X0%(1) where + stands for
addition, * stands for multiplication, ! stands for
exponentation and b is the base of the numeral.

An unsigned integer numeral, i, denotes the number, I,
associated with the integer portion of i. Thus "13", "15#R8"

and "1101#B2" all denote the integer with decimal
representation "13". If i has a 1leading minus sign, 1 is
negated ("-1101#B2" denotes the integer with decimal

representation "-13"),

(3) General Notes on Arithmetic

Integer arithmetic operators accept base 2, 8, or 10
arguments interchangeably. If the operators are binary
arithmetic operators such as +, -, ¥ or /, the result is in the
minimal base among the arguments if the bases of the arguments
differ; otherwise the result is in the base of the arguments.

All integer arithmetic operators produce standard-form
result numerals; this guarantees uniqueness.

All arithmetic is officially of unbounded precision. There
is no maximum precision of integer operands and results, for
example. (See Section J, "SEMALOL(76) Parameters".)

I. SEMANGL(76) Iterators

Each SEMANOL(76) iterator consists of three parts: initial
keyword, iteration control clause, and iterated clause.
The iterators are identified by their initial keyword:
#FOR-ALL, #WHILE (iterator commands), #FOR-ALL, #THEKE-EXISTS,

12

SIS SN 00 [N e s i Sl SN a2 e

SEMANOL(76) Reference Manual -

II. General Overview

n #TH, #FIRST, #LAST, #SUBSEQUENCE-OF-ELEMENTS, ’
#SEQUENCE-OF-NODES (iterator expressions). The iteration ‘
control clause identifies either (1) a control expression (in
the #WHILE command), or (2) a dummy variable name and an
iteration control sequence; the control sequence may be

x explicit ("dummy-var #IN s", where 8 is a sequence), or
implicit ("dummy-var #IN n", where B is a parse tree node and .
the 1implied sequence 1is the preorder sequence of nodes in fi;

"dummy-var: lb < = dummy-var < = ub, where the implied sequence ,
is the sequence of integers: 1B, 1B + 1,...,0b. If the upper |
bound 1is deleted, the implied sequence of integers becomes
infinite). For iterator commands, the iterated clause has the |
form "#DO compound-stmt"; for iterator expressions, the form is
F either "#SUCH~THAT (bool~-exp)" or "#IT-IS-TRUE-THAT
E | (bool-exp)". |

The #WHLWLE command is evaluated in the following manner:

the expression in the control clause is evaluated. If the
result is (1) <true>, then the iterated clause is evaluated,
and then the entire #WHILE command is re-evaluated; (2)
{false>, then the termination condition has been achieved, and |
control is given to the statement following the iterated “
clause; (3) any other value, then the result of the #WHILE
command is <error>. |4

The other iterators are evaluated in the following manner:
the expression(s) in the control clause are evaluated (in]
left-to-right order). 1If the implied sequence 1is empty, a ‘
default action 1is taken: iterator commands are considered
complete and control is given to the statement following the
iterated clause; iterator expressions return a default value
which depends upon the particular iterator (e.g., #FOR-ALL E
returns <true>, #THERE-EXISTS returns <false>, #FIRST returns |
<undefined>, #SUBSEQUENCE-OF-ELEMENTS returns <nilseq>).
Otherwise, the compound-statement or boolean-expression of the
iterated clause is repeatedly evaluated until the termination
condition for the particular iterator is achieved. In each
evaluation of the iterated clause, any occurrences of the dummy
variable name are taken to denote an element of the control
sequence; in the first iteration, the first element of the
control sequence is denoted by the dummy variable (except in .
the #LAST iterators, where the last element is denoted); in the |
nth iteration, the nth element is denoted (nth from the last, ;
for #LAST). i

For the #FOR-ALL command, and the #SUBSEQUENCE-OF-ELEMENTS |
and #SEQUENCE-OF~NODES expressions, the iteration terminction B |
condition is reached just after the last element of the control
sequence has been denoted in an iteration. For the other

13

:
3
%
B
{
g
L

SEMANOL(76) Reference Manual

II. General Overview

iterator expressions, (n#TH, #FIRST, #LAST, #FOR-ALL,
#THERE-EXISTS) the termination condition is reached just after
the evaluation of the iterated clause first (fith for n#TH)
yields <true. Thus it may be the case that not all elements
of the control sequence are used as the denoted value. Since
side effects may occur as the result of any evaluation of the
iterated clause, this termination rule may be significant in a
SEMANOL(76) specification.

It is possible for an iterator to result in an <error> in
the following ways: (1) the expression evaluation(s) in the
control clause yield values inappropriate for the iterator, (2)
evaluation of the iterated clause yields <error>, and (3)
evaluation of the iterated clause yields a non-logical value
(i.e., neither <true> nor <false>).

J. SEMANOL(76) Parameters

In this reference manual, no provision 1is made for
parameters which depend upon a particular SEMANOL(76) language
processor, (Such parameters as bits-per-word and
maximum-precision-of-multiply are common for other implemented
languages). Most parameters which can be simply characterized
are introduced into programming language semantics to allow for
certain space and time optimizations. However, the theoretical
and practical expository benefit of such parameters in a
metalanguage 1is quite doubtful. For this reason, we have
adopted certain principles.

First, every SEMANOL(76) program should be written as if
there were no restrictions upon the resources available to
represent any SEMANOL(76) object, function, or relation. The
"official™ SEMANOL(76) language is itself defined without such
restrictions; any "official"™ SEMANOL(76) implementation will
process the "official" SEMANOL (76) language. However,
unofficial implementations may be useful, especially if the
following rule is applied: all limitations will be expressed in
terms of a (large) class of objects rather than in terms of
particular objects. For example, it may be useful to limit the
maximum total number of string characters in use at any point
in the execution of a SEMANOL(76) program, but it is much less
usefel to 1limit the 1length of individual strings (by, for
example, imposing a 1limit on the size of numeral strings as
arguments of numeric operations).

Note that there 1is no theoretical reason that such
constraints cannot be stated more precisely (by, for example,

14

SEMANOL(76) Reference Manual

II. General Overview

assigning a resource requirements measure to each SEMANOL(76)
keyword expression, and defining the effect of each SEMANOL(76)
operator conditionally upon the availability of its required
resources); however, we feel this to be unnecessary at present.
Also, even in the presence of limited SEMANOL(76)
implementations, we believe that SEMANOL(76) programs should be
written as if such constraints were not present at all.

PRS- o e s 7 =t s

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

III. Description of SEMANOL(76)

This chapter consists of detailed definitions of the
SEMANOL(76) program constructs. The organization follows a
"top-down" grammar for the SEMANOL(76) language.

A. Format

The text of this chapter in sections, each consisting of a
portion of the SEMANOL(76) grammar, followed by a series of
(Keyword schema, explanation) pairs for the Keywords just
introduced in the grammar. The sections of the text have the
following form:

Keyword schema

Explanation; i.e., a description of the result
produced by evaluating a keyword expression
having the format of the keyword schema.

Next keyword schema
Next result description.

v &+ » GLC,

(Sometimes general discussions of complex points are
interspersed with the (Keyword schema, explanation) pairs.)

16

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

B. Conventions and notation

The conventions used in this chapter are derived from those
in Chapter 1II: if x is a meta variable standing for a

SEMANOL(76) expression, then

X stands for the value of the expression, and
if x is a constant,
X stands for the object denoted by x.

There are certain special meta constants used to denote
special SEMANOL(76) objects:

<true> meaning the boolean value, true;
<(false> meaning the boclean value, false;
<nil> meaning the empty string;

<nilseq> meaning the empty sequence.

We also use <error> and <stop> to indicate invocation of
the error and stop functions respectively, which terminate the
evaluation process; the error function also causes an error
indication to be written on the standard error file.

The notation "B[x]" is used in the description of the high
level 1iterator keywords to designate the iterated Boolean
expression B with every occurrence of the dummy variable name
replaced with x, a constant for an object %.

A SEMANOL(76) object is said to be string convertible if it

is a
string or a parse tree node.

If x denotes a string convertible object, %, then the
"string value of x" is ¥ if % is a string, and the string of
terminals corresponding to %, if % is a parse tree node.

Some SEMANOL(76) constructs are defined in terms of others.
In some result descriptions for keyword schemata certain
conditionals will be written as SEMANOL(76) expressions for

precision or clarity, and they are said to hold 1if, when
evaluated, they would return <true>. For example, the

17

e e

T —

e o

f SEMANOL(76) Reference Manual
Bl III. Description of SEMANOL(76)

expression "a = b" is written instead of & equals B because it
is more precise -- it means evaluate the expression "a = b"
according to the SEMANOL(76) evaluation rules, and if the
result is <true> then the condition & equals b is assumed to
hold and the condition is satisfied.

SEMANOL(76) Reference Manual
I1I. Description of SEMANOL(76)

C. Definitions

SEMANOL(76) Program Structure

I ZZ222222222222 222222222222 2

#DF SEMANOL-76-program

=> <gap> <Declaration-section>
<Optional-context-free-syntax> <gap>
<Control-section>
<{Optional-semantic~definition-section> <gap>

=> <gap> <Declaration-section>
<Optional-context-free-syntax> <gap>
<{Semantic-definition-section> <gap>
<Control-section> <gap> #.

#DF Optional-context-free-syntax
=> <#NILSET> #U <<gap> <Context-free-syntax>> #.
#DF Optional-semantic-definition-section

=> <{#NILSET> #U <<gap>
<Semantic-definition-section>> #.

A SEMANOL(76) program may contain four sections, each
consisting of a sequence of basic constructs.

The "Declarations section" consists of a collection of
declarations, by which "Syntactic components"” and "Global
variables" can be identified.

The Context free syntax section contains a collection of

19

= L - ot L a o it el Rbok

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

Syntactic definitions, which are used to specify an (almost)

context free grammar for a language (i.e. a set of strings)
over the ASCII character set. Actually, several possibly
independent grammars can be included in this section. Each
syntactic definition serves to identify a set of strings with a
Syntactic class name, which can then be used in several ways in
SEMANOL(76). Any syntactic class name may be used as the start
symbol for a grammar.

The manti f ti n contains Semantic
definitions, which are operationally similar to function
declar.tions in other programming languages. Semantic

definitions consist of a Semantic definition name followed by
an optional Dummy parameter 1list followed by a Semantic

. A semantic definition may be functional or
procedural; i.e., it specifies the selection of a SEMANOL(76)
expression which is to be evaluated (functional), or it
specifies a sequence of Statements which are to be executed in
order (procedural). Semantic definitions may be directly or
indirectly recursive.

The Control section contains a list of statements exactly
like those in procedural semantic definitions; the statements
are to be executed in order. Statements may contain semantic
definition references within them -- in most reasonable
SEMANOL(76) programs at least one statement will have such an
imbedded reference. At least one such statement must appear
here to begin the interpretation. 1In practice, several are
used to specify the major steps in the interpretation of a
program in the object language.

The Context free syntax section and the Semantic
Definitions section are optional. The Declarations section may
be empty. Thus the only absolutely required section of a
SEMANOL(76) program is the Control section.

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

URZ S22 2222222222222 2222227

Declarations

#DF Declaration-section
=> <%<Declaration>> #.
#DF Declaration
=> <Declare-syntactic-components>

=> <Declare-glcbal-variables> #.

The "Declarations section" consists of a collection of
declarations, by which "Syntactic components”™ and "Global
variables" can be identified.

#DF Declare-syntactic-components

=> <'#DECLARE-SYNTACTIC-COMPONENT'> <gap> <':'>
<gap> <Semantic-definition-name> <gap> <%<<Comma>
<gap> <Semantic-definition name> <gap>>> <'#.'>
#.

Certain semantic definitions may be declared to be
"syntactic components" by having their names listed in a
declaration of this type. To appear in such a declaration, a
semantic definition must have these properties: (1) it must
take exactly one argument, (2) it must in no way depend upon
any global variable or hidden input variable, or external

function. This last qualification is a static one -- i.e., (1)
no reference, whether or not it is actually executable, may

21

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

appear to a global variable, or to "#INPUT" “or Lo
"#EXTERNAL-CALL-OF"; nor (2) may any semantic definition
reference appear to a semantic definition which violates this
qualification (parts 1 & 2).

Any reference to a syntactic component definition must be
evaluated to have a parse tree node as the actual argument; if
not, the result of the reference is <error>.

These restrictions are sufficient to guarantee that the
evaluation of a syntactic-component reference can only involve
the composition of SEMANOL functions wupon (1) SEMANOL(76)
object constants and (2) the parse tree containing the actual
argument node. This implies that the result of every syntactic
componert is a function of the parse tree of the actual
argument node, and therefore is truly syntactic in nature.

Furthermore, the evaluation of all references to a
particular syntactic-component with a particular node argument
will return identical results.

Therefore, an optimization of the evaluation of SEMANOL(T6)
syntactic-component references is possible: for every
(syntactic-component, actual node) pair the normal evaluation
rules need be followed only once to produce a result value;
thereafter a simple table lookup can be used to determine the
result value. This concept is implemented by associating with
each node on a parse tree a potential list of pairs, each of
the form: (s, ¥), where s is the semantic definition name of a
syntactic component and ¥ is the wunique result value of
evaluating any reference to the named syntactic-component with
the node as argument. A pair (s, ¥) is added to the 1list as a
side effect of the first such evaluation of a reference to
syntactic component, s, with the node as argument; every
subsequent reference to syntactic component, s, with the node
as argument will be evaluated by searching the list of pairs
for (s, ¥) and returning the value V.

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

#DF Declare-global-variables

=> <'#DECLARE-GLOBAL'> <gap> L <{gap> <Name> <{gap>
<%<<Comma> <gap> <Name> <gap>>> <'#.'> #.

An abbreviation for the two basic assignment operators is
available in SEMANOL(76), using "declared global variables". A
receiving string which has the syntax of a SEMANOL(76) "name"
may be declared a global variable. Then it may appear in a
(semantic) expression; it may also appear as the assigned-to
variable immediately after the "#ASSIGN-VALUE!" of a
SEMANOL(76) assignment statement.

If a declared global variable name (say x) appears in any
(semantic) expression it is an abbreviation for the semantic
expression "#LATEST-VALUE('x')". The statement "#ASSIGN-VALUE!
X = Semantic-~expression" is an abbreviation for the statement
"#COMPUTE! #ASSIGN-LATEST-VALUE ('x', Semantic-expression)".

SEMANOL(76) Reference Manual I p
|

III. Description of SEMANOL(76)

Control Statements

i 2222222222222 22222 A

#DF Control-section

=> <'#CONTROL-COMMANDS'> <gap> <':'> <gap>
<%1<<Compound-statement> <gap>>> <'#.'> #. ‘

The "Control section" contains a list of statements exactly ‘
like those in procedural semantic definitions; the statements ¥ .
are to be executed in order. Statements may contain semantic ‘

definition references within them -- 1in most reasonable
SEMANOL(76) programs at least one statement will have such an
imbedded reference. At least one such statement must appear

here. In practice, several are used to specify the major steps
in the interpretation of a program in the object language.

Execution of a SEMANOL(76) program begins with the first
statement in the Control section. When execution of that
statement is completed the next sequential statement is
executed; execution proceeds in this sequence unless the
statement list is exhausted, in which case execution terminates
with a standard error message.

Note that the "RETURN-WITH-VALUE!"™ statement 1is not
syntactically disallowed in the Control section, but may not be . |
executed in the Control section (any attempt to do so will (4
produce an <error>).

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76) {

#DF Compound-statement
=> <For-statement>

=> <'#WHILE'> <gap> <Boolean-expression> <gap> i
<'#D0O'> <gap> <Compound-statement>

=> <'#IF'> <gap> <Boolean-expression> <gap>
<'#THEN'> <gap> <Compound-statement>

=> <'{#BEGIN'> <gap> <Compound-statement> <gap>
<%<Compound~statement> <gap>>> <'#END'>

=> <Simple-statement> #. L
#DF For-statement

|
|
|
=> <For-all-clause> <gap> <'#DO'> <gap> (A
<Compound-statement> #. ;g

#DF For-all-clause

(2
=> <'#FOR-ALL'> <gap> <Name> <gap> <'#IN'> <gap> ia
{Sequence-~expression> I

|

=> <'#FOR~-ALL'> <gap> <Name> <gap> <':'> <gap>
<<Bounded-interval> #U <Unbounded-interval>> #.

#DF Bounded-interval

=> <String-expression> <gap> <'<='> <gap> <Name>
<gap> <'<='> <gap> <String-expression> #.

inay

#DF Unbounded-interval

=> <String-expression> <gap> <'<='> <gap> <Name>

#FOR-ALL x #IN s #DO ¢

<error> if 8 is not a sequence.

Otherwise: perform the following steps in order.

L i e st e e i

&

(M)

(2)

(3)

#FOR-ALL x: a < =

#FOR-ALL x: a <

1 (1)

(2)

(3)
#WHILE b #DO c

X

SEMANCL(76) Reference Manual

III. Description of SEMANOL(76)

Construct a new dummy variable named x, with
scope extending throughout c¢. Construct a
new dummy variable named sx, with no scope.
Evaluate s. Assign 3 to sx.

If § is <nilseq>, the empty sequence, go
immediately to the statement following c.
(Halt on <error> if there is no following
statement.) Otherwise,

Assign first element in § to x; Assign tail
of 3x to sx. [Note: tail of 3x is given by

#TERMINAL-SUBSEQ-OF-LENGTH (#LENGTH(sx) - 1)
#0OF sx".]

Execute Compound-statement c; go to 2.
< = b #bO e
#DO c

<error> if "a #IS-NOT #INTEGER" or (if b is
given) "b #IS-NOT #INTEGER".

Otherwise: perform the following steps in order

Construct a new dummy variable named x, with
scope extending throughout c¢. Evaluate a
and assign -1 to x. If b is given,
evaluate b and save b for later use.

Assign %+1 to x. If b is given, and if % >
B, go immediately to the statement following
¢. (Halt on <error> if there is no
following statement.) Otherwise,

Execute compound statement, c; go to 2.

Perform the following steps in order.

(1
(2)

(3)

Evaluate b

If b is <true>, then execute compound
statement, ¢ and then go to step 1.

If b is <false>, go immediately to the
statement following ¢. (Halt on <error> if

26

s e L e

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

there is no following statement).

(4) Otherwise, halt on <error)>.

#IF b #THEN s
If "b #EQ #TRUE", execute Compound-statement s,

If "b #EQ #FALSE", proceed to the statement
following s. (Halt on <error> if there is no
following statement.)

Otherwise, halt on <error>.

#BEGIN s1 s2 ... sn #END

Compose the block of statements s1,s2,...,sn into
a single Compound-statement.

Execution of the composed block proceeds by
executing s1,s2,...,sn in order.

#DF Simple-statement

=> {'"#ASSIGN-VALUE'> <gap> <'!'> <gap> <Name>
<gap> <'='> <gap> <Expression>

=> <'#COMPUTE'> <gap> <'!'> <gap> <Expression>

=> <'"#RETURN-WITH~VALUE'> <gap> <'!'> <gap>
<Expression> #.

#ASSIGN~VALUE! a = e

Note: a must be a declared global variable, and e
must be a semantic expression.

Evaluate semantic expression e, assign resulting
object to declared global variable a.

This statement is an abbreviation for "#COMPUTE!
#ASSIGN~LATEST~VALUE('a',e)".

27

% e
4 T T ISP S S A - o

Akl i,

SEMAYOL(76) Reference Manual
III. Description of SEMANOL(76)

#COMPUTE! e
Evaluate semantic expression e.
#RETURN-WITH-VALUE! e _ o

<error> if this statement is executed in the
control section.

Evaluate e. Terminate evaluation of the
procedural semantic definition containing this
statement, returning & as the value of the

| semantic definition reference. '3

28

e .\:‘;A »

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

Syntactic Definitions

#DF Context-free-syntax

=> <'#CONTEXT-FREE-SYNTAX'> <gap> <':'> <%<<gap>
<{Syntactic-definition>> #.

The "Context free syntax section" contains a collection of
"Syntactic definitions", which are used to specify an (almost)
context free grammar for a language (i.e. a set of strings)
over the ASCII character set. Actually, several possibly
independent grammars can be included in this section.

#DF Syntactic-definition

=> <'"#DF'> <gap> <Syntactic-class-name> <gap>
<%1<<L'=>'> <gap> <Syntactic-expression> <gap>>
<'#U'D> #.

#DF Syntactic-class-name

=> <Name> #.

Syntactic definitions serve as the productions of (one or
more) grammars collected in the Context free syntax section.
Each syntactic definition serves to declare the syntactic class
name (or syntactic definition name) for use in the remainder of
the SEMANOL(76) programs. For purposes of explication, we will
speak of the grammars in this section as generative grammars:

29

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

i.e., the syntactic definitions represent rules for the
construction of possibly infinite sets of strings (languages).
In fact, the grammars are used in SEMANOL(76) as recognition
grammars, or parsing grammars, and are employed in the
semantics of the "CONTEXT-FREE-PARSE-TREE..." operator, and
certain membership relations discussed below.

The terminals of SEMANOL(76) syntactic expressions are the
strings specified by the syntactic set constants discussed
below. SEMANOL(76) syntactic expressions need not be grounded;
an expression is not grounded if by wusing the standard
rewriting algorithm for grammars (see Appendix A), one cannot
reduce the expression to a string of terminals. However, any
such expression cannot be employed in the successful parse of a
string using the "#CONTEXT-FREE-PARSE~TREE" operator. There is
one ungrounded syntactic set constant: #EMPTYSET.

Each syntactic class name or syntactic definition name is
then associated with a possibly infinite set of strings, called
a syrtactic class, by virtue of the syntactic definition which
declares the syntactic class name. Each such syntactic
definition has the form:

#DF ¢ => b1
=> b2
=> b3

=> bn #.

where the ¢ 1is a syntactic definition name, and the bi are
syntactic expressions. The name c¢ is then associated with the
syntactic class formed by taking the union of the sets b1, b2,
eay bn, represented by the corresponding syntactic
expressions.

It is assumed that any string x in the set, &, associated
with ¢ is in exactly one of the sets bi. If this is not so
(i.e., x 1is in more than one Bi), the definition of ¢ is said
to be ambiguous. Ambiguity is checked for only when parsing or
recognizing a given string, as described above. Thus a grammar
may *e ambiguous, which is not considered legal in SEMANOL(76),
but that fact may not be detected during the execution of the
SEMANOL(76) program. A precise definition of ambiguity is

30

e

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

given in Appendix A.

#DF Syntactic-expression

=> <Syntactic-term> <%< <gap> <'#U'> <gap>
<Syntactic-term>>>

=> <Syntactic-term> <gap> <'#S-'> <gap> < <K',
<gap> <String> <gap> <%<<Comma)> <gap> <String>
<gap>>> <'>'> #.

#DF Syntactic-term

a #U b

=> <Syntactic-primary> <%<<gap>
<{Syntactic-primary>>>

=> <'('> <gap> <Syntactic-expression> <gap> <')'>

=> <Syntactic-class-name>
=> <'%'> <gap> <'1'> <gap> <Syntactic-primary>
=> <'%'> <gap> <Syntactic-primary>

=> <Syntactic-set-constant> #.

The union of the sets & and b.

a #S-~ <'s1','s2',...,'sn'>

The set of strings obtained by removing the
strings, s1,s2,...,sn from &.

<b1><b2>...<bn>

The set concatenation of # sets of strings,
51,82,...,8n; i.e., the set of strings {a: a =
"ala2...an", and "ai1" is in B1, and "a2" is in
52, ..., and "an" is in Bn}.

SEMANOi.(76) Reference Manual
III. Description of SEMANOL(76)

The set, &, also designated by the SEMANOL(T76)
syntactic expression, e.

s
; %
; The Kleene-star set, B*, That is, the set which
E might be designated by the infinite
é SEMANOL(76)-1ike syntactic expression, "#NILSET
i #U #U #U ... ",

21

The subset of the Kleene-star set, B%, found by
removing the empty string, <nild.

#DF Syntactic-primary
=> <'<'> <gap> <Syntactic-expression> <gap> <'>'>

=> <'<'> <gap> <String> <gap> <%<<Comma> <gap>
<String> <gap>>> <'>'> #.

#DF Syntactic-set-constant

=> <'#ASCII'>
<'#CAP'>
<'#DECNUM'>
<'#DIGIT'>
<'"#EMPTYSET'>
<'#GAP'>
<'#LETTER'>

<'"#LOWCASE'>
<'#NAT-NOS'>
<'#NILSET'> i ;
<'#SPACESET'> #.]

32 ki

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

<e>

#ASCII

#CAP

#DECNUM

#DIGIT

#EMPTYSET

#GAP

The set, &, also designated by the SEMANOL(76)
syntactic expression, e.

The set of all ASCII characters.

The set of all ASCII capital letters, A through
Z.

The set of ASCII strings formed by following an
optional plus or minus sign by one or more
digits. That is, the set also given by the
SEMANOL(76) syntactic expression "<#NILSET #U

<'+', '-'>> <%1 <#DIGIT>>". (see the discussion
of the "CONTEXT-FREE-PARSE-TREE..." operator,
below -- especially Section 2. --, for a more

detailed discussion of constraints on the use of
this set constant.)

The set of ASCII decimal digits, 0 through 9.

The set containing no elements.

The set consisting of strings of 0 or more ASCII
blank characters; except that the empty string,
<nil>, is excluded in alphanumeric left and right
contexts. (Here we are speaking of syntactic set
constants in terms of generative grammars; see
Appendix A, Section 2, for a more detailed
discussion of constraints on the use of this set
constant.)

f SEMANOL(76) Reference Manual
; III. Description of SEMANOL(76)

#LETTER
The set of all ASCII capital and lower case
letters, A through Z, and a through z. That is,
the set also designated by the SEMANOL(76)
syntactic expression "<#CAP #U #LOWCASE>".
#LOWCASE
The set of ASCII lower case letters, a through z.

#NAT-NOS

The set consisting of strings of one or more
ASCII digits. That is, the set also designated
by the SEMANOL(76) syntactic expression "<%1
<#DIGIT>>". (see Appendix A, Section 2, for a
more detailed discussion of constraints on the
use of this set constant.)

#NILSET
The set consisting of the null string.
#SPACESET

The set consisting of the single ASCII blank
character.

<s1,82,...,8n>

The set , {%1,82,...,8n}, of strings of ASCII
characters

34

PENEEIRY

i.
-1
g

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

NERFERERRRERRRRBRERRRRERS

Semantic Definitions

i 2222222222222 22222222 2 Al

#DF Semantic-definition-section

=> <'"#SEMANTIC-DEFINITIONS'> <gap> <':'> <%<<gap>
<{Semantic-definition>>> #.

The "Semantic definitions section" contains "Semantic
definitions", which are operationally similar to function
declarations in other programming languages. Semantic
definitions consist of a "Semantic definition name" followed by
an optional "Dummy parameter 1list" followed by a "Semantic
definition body". A semantic definition may be "functional"
or "procedural"; i.e., it specifies the selection of a
SEMANOL(76) expression which is to be evaluated ("functional"),
or it specifies a sequence of "Statements" which are to be
executed in order ("procedural"). Semantic definitions may be
directly or indirectly recursive.

- ————— - - — -t -

#DF Semantic-definition

=> <Functional-definition>

=> <Procedural-definition> .
#DF Functional-definition

=> <Simp1e-defini£ion>

=> <Definition-by-cases> #.

35

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

Semantic definitions are invoked by evaluating "semantic
definition references", of the Zorm ®ef{al,..s.,an)® or
"($al,...an$)c", where ¢ is a semantic definition name, and the
ai are SEMANOL(76) semantic expressions in an optional "actual
argument expression 1ist", The sequence of steps for
evaluating a semantic definition reference is as follows:

{

4

|

|

|

|
| |
{

|

(1) Evaluate the actual argument expressions in the semantic
definition reference, from left to right (if there are any).

(2) Find the corresponding semantic definition (if there is ‘i
none, halt on <error>). Construct nuw local (formal parameter)

variables, given the formal parameter names (if there are any).
If the number of values does not equal the number of parameter
variables, halt on <error>. Assign the values of the argument
expgessions to the formal parameter variables (if there are
any).

(3) (a) If the semantic definition name has not been declared
a syntactic component name in the declarations section, then do
(c); otherwise do (b).

bheiiicon

(b) If the first actual argument value is a parse tree
node, n, and if the syntactic componenrt pair, (c,v) is attached
to n, ¥ becomes the result value, which is the value of the
semantic definition reference. Otherwise, do (c).

(c) Evaluate the semantic definition body as described in
(4) Dbelow, giving a result value which is the value of the
semantic definition reference. If the semantic definition has |
been declared a syntactic component, and if the first actual |
argument value is a parse tree node (which has no syntactic
component pair (c,v) attached), then attach to the node the
pair (c,v1) where v1 is the result value.

(4) This step is described in detail in the discussions below
for each type of semantic definition.

#DF Simple-definition

=> <'#DF'> <gap> <Definiendum> <gap>

36

-~

B ———

¢
-
1
3’4
:

SEMANOL(76) Reference Manual
TEE

Description of SEMANOL({76)

<Unconditional~definiens> <gap> <'#.'>
#DF Definiendum
=> <Semantic-definition-name)> <gap> <'('> <gap>
{Formal-param-name)> <gap> <%<<Comma> <gap>
<Formal-param-name> <gap>> <')'>
=> <Semantic-definition-name> #.
#DF Semantic-definition-name
=> <Name> .
#DF Formal-param-name
=> <Name> #.

#DF Unconditional-~definiens

=> <'=>'> <gap> <Expression> #.

The form of a simple definition is
#DF ¢ (p1,...,pn) => expr #.

where the ¢ is the semantic definition name, and p1 through pn
are formal parameter names in an optional formal parameter
list, and expr is a SEMANOL(76) semantic expression possibly
containing formal parameter names, and also possibly containing
semantic definition references (though normally not to ¢
itself, as this would almost surely be a circular (ungrounded)
recursion).

Unun evaluation of a semantic definition reference
corresponding to definition ¢, the -evaluation sequence
described above would be invoked, using step (4) below:

%#%% (4) The result value of the simple definition body is
simply obtained by evaluating the unconditional definiens, ###

Note that any appearance of a formal parameter name in the
unconditional definiens has, as its value, the value assigned
in step (2) of the evaluation sequence above.

o e —
e s etk Sdacte s s b N b

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

#DF Definition-by-cases

=> <'"#DF'> <gap> <Definiendum> <gap>
<{%<<Conditional-definiens> <gap> <';'><gap>>>
<Conditional-definiens> <'#.'>

=> <'#DF'> <gap> <Definiendum> <gap> <%1 \
<<Conditional~definiens> <gap> <';'> <gap>>>
<Unconditional-definiens> <'#0OTHERWISE'> #.

#DF Conditional-definiens

=> ('=>'> <gap> <Expression> <gap> <'#IF'> <gap>
<Boolean-expression> #.

The form of a definition-by-cases is k.

TP ¢ (p1,...,p0)
=> expr-1 #IF cond-1 ;

=> expr-2 #IF cond-2 ;

=> expr-n #OTHERWISE #.

where n > 1, and where the parameter 1list and the last
definiens are optional. (If the last definiens is miscinz, a
definiens of the form:

i ey i i s e

"=> #ERROR #OTHERWISE" {

is assumed.) The value expressions, expr-i, and the
conditional expressions, cond-i, may contain formal parameter
names and semantic definition references to any semantic
definitions (including c).

Upon evaluation of a semantic definition reference

corresponding to definition ¢, say, the evaluation sequence
described above would be invoked, using step (4) below.

38

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

%#%%® (4) The evaluation of a definition-by-cases body proceeds
as follows:

Evaluate the conditional expressions, in order, until a
non-<false> result is obtained, say, for cond-j. If the value
of cond-j is not <true>, then halt on <error>. Otherwise,
evaluate the corresponding value expression, expr-j, thus
producing the result value (evaluation of the body thus

completing).

It <false> is the value obtained for all conditional
expressions, then the value expression expr-n in the
#OTHERWISE~definiens is evaluated to produce the result value.
(Here an implicit "=> #ERROR #OTHERWISE" definiens 1is assumed
if there is no explicit #OTHERWISE-definiens, and in this case,
an <error> halt would ensue.,) #*#

#DF Procedural-definition
=> <'#PROC-DF'> <gap> <Definiendum> <gap>

<Compound-statement> <gap>
<{%<<Compound-statement> <gap>>> <'#.'> #.

The form of a procedural definition is
#PROC-DF c(p1,...,pn)

s1

sn #. (n > 0)

where the parameter list is optional and the si are
Compound-statements. The expressions in the si may contain
formal parameter names, and semantic definition references to
any semantic definitions (including c).

39

SEMANOL(76) Reference Manual &
III. Description of SEMANOL(76) ’

Upon evaluation of A semantic definition reference
corresponding to definition ¢, say, the evaluation sequence
described above is invoked, using step (4) below:

LAL @'Y The evaluation of the procedural definition body
proceeds by executing the compound statements s1 through sn, in
order, according to the rules described above in the discussion
of the control-section. #%#

If evaluation ever produces a result value, it does so by {
executing the "RETURN-WITH-VALUE!" statement (again described
above in the discussion of the control section).

40

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

Expressions

SEMANOL(76) expressions are composed from keyword
expressions, and each of the keywords has a precedc.2e .or
evaluation as given in the grammar used in the following pages.

#DF Expression
=> <Boolean-expression>
=> <'#STOP'>

=> <'#ERROR'> #.

#STOP

<{stop>; when this keyword is evaluated, the
execution of the SEMANOL(76) program terminates.

#ERROR

<error>; when this keyword 1is evaluated, the
execution of the SEMANOL(76) program terminates
with a standard error message.

41

SRRSOy o

SEMANOL(76) Reference Manual

I111.

#DF

#DF

#DF

#DF

#DF

Description of SEMANOL(76)
NERRRRRRR RN RN ER RN REREN R
Boolean Expressions
FERRRRR R RN NN RRRRRNEREY
Boolean-expression
=> <Implication> <%< <gap> <'#IFF'>
<Implication>>> #.
Implication
=> <Disjunction> <%< <gap> <'#IMPLIES'>
<Disjunction>>> #.
Disjunction
=) <Conjunction> <%< <gap> <'#OR'>
<Conjunction>>> i.
Conjunction
=> <Negation> <%< <gap> <'&','"#AND'>
<{Negation>>> #.
Negation
=> <Boolean-primary>
=> <'#NOT'> <gap> <Boolean=-primary> .
Boolean-primary

=> <Relational-expression>

=> <Sequence-expression> #.

<{gap>

{gap>

{gap>

{gap>

TR eI e 8, S

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

a #IFF b

a #IMPLIES b

a #OR b

a #AND b
aé&hb

#NOT a

<trued> if (& = <true> and B = <true>) or (2

<false> and ®

<false>)

<false> if (&
<true> and b = <false>)

<error> otherwise.

<true> if 3 = <false> or B = <trued;
<false> if & = <true> and b = <false>;

<error> otherwise.

<true> if & = <true> or b = <true>;
<false> if a = <false> and B = <false>;

<error> otherwise.

<true> if & = <true> and B = <true>;
<false> if & = <false> or B = <false>;

<error> otherwise.

<false> if & = <true>;
<true> if & = <false>;

<error> otherwise.

43

<false> and B = <true>) or (&

it

"

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

T S T T ST I

Relational Expressions

S

| #DF Relational-expression
=> <Membership-relation>
=> <Case-identification>
=> <{Subword-relation>
=> <Precedes-relation>
E | => <Quantifier-relation>
=> <Equality-relation>

=> <Arithmetic-inequality> #.

The SEMANOL (76) relations are really characteristic
functions which return the value <true> if the arguments are
members of the relation, <false> if the arguments are not in
the relation but are acceptable to the function, and <error> if
the arguments are not acceptable to the function.

#DF Membership-relation
=> <Type-identification> ; E|

=> <Character-identification>

4y

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

=> <{Syntactic-class-membership>
=> <Sequence-membership> #.
#DF Membership-operator
2> <"#18'>
=> <'"#IS-IN'>
=> <'#IS-NOT'>
=> <'"#IS-NOT-IN'> #.

The four types of membership relation are distinguished
according to the second operand expression, b; b must be either
a type designator, a character set constant, a wunion of
syntactic class references or a sequence expression. If b is
not one of these kinds of expressions, then "a #IS b" produces
{error> when evaluated.

The membership relations all have one of the following
forms:

"a #IS b"

"a #IS-NOT b"

"a #IS-IN b"

"a #IS-NOT-IN b"

Since the other three forms are completely definable in
terms of the #IS-expressions, we shall do so here. The rest of
the membership relations will be described only for the
#I1S-expression.

a #IS-IN b
Synonymous with "a #IS b"; that is,
<true> (<false>) if and only if "a #IS b"
evaluates to <true> (<false>);
<error> otherwise.

a #IS-NOT b

Synonymous with "#NOT(a #IS b)"; that is

45

SEMANOL(76) Reference Manual
III. Description of SEMANOL(T76)

<true> (<false>) if and only if "a #IS b"
evaluates to <false>(<trued>);

<error> otherwise.
a #IS-NOT-IN b
Synonymous with "a #IS-NOT b"; that is

{true> (<false>) if and only if "a #IS b"
evaluates to <false>(<trued);

<error> otherwise.

#DF Type-identification

P => <Sequence-expression> <gap>
| <{Membership-operator> <gap> <Type> #.

25 #DF Type

=> <'#UNDEFINED'>

=> <'#BOOLEAN'>

=> <'#SEQUENCE'>

=> <'#NODE'>

=> <'#STRING'>

=> <'#INTEGER'>

=> <'"#BIT-STRING'> #.

13‘ [ALSO SEE: Chapter II, Section C. "SEMANOL(76) Data Types"]
a #IS #UNDEFINED
<true> if & is <undefined>;

{false> otherwise. I

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

a #IS #BOOLEAN
<true> if & is either <true> or <false>;
<false> otherwise.
a #IS #SEQUENCE
<true> if & is a SEMANOL(76) sequence object;
<false> otherwise.
a #IS «NODE
| <true> if & is a SEMANOL(76) parse tree node;
<{false> otherwise.
{ 5 a #IS #STRING
; <true> if & is a SEMANOL(76) string object;
| <false> otherwise.
a #IS #INTEGER
<true> if & is a string which satisfies the
syntax for a SEMANOL(76) integer constant (c.f.,
the grammar for <Integer-constant> below).
f* <false> otherwise.
a #IS #BIT-~-STRING
<true> if & is a string which satisfies the
syntax for a SEMANOL(76) bit string constant
(c.f., the grammar for <Bit-string-constant>

below).

E | {false> otherwise.

#DF Character-identification

tﬁ => <Sequence-expression> <gap>
- <Membership-operator> <gap> <Set-constant> #.

47

SEMANOL(76) Reference Manual =
III. Description of SEMANOL(76)

, #DF Set-constant

{A => <'#CAP'>

% => <'#DIGIT'>

| => <'"#LETTER'>

E => <'#LOWCASE'>

4 => <'"#SPACESET'> ¢.

- - - - - - - . e - - - - -

a #IS #CAP
<error> if & is not string convertible;

{true> if the string value of & is in the set of
ASCII capital letters, A through Z.

<false> otherwise.

a #IS #DIGIT _ E

<error> if a is not string convertible;

{true> if the string value of & is in the set of 3
ASCII decimal digits, 0 through 9. 'S

<{false> otherwise.

#IS #LETTER

)

<error> if & is not string convertible; |3
{true> if the string value of & is in the set of

ASCII capital and lower case letters, A through

Z, and a through z;

<false> otherwise. | 3

#IS #LOWCASE

I\

<error> if a is not string convertible;

SEMANOL(76) Reference Manual L éj
III. Description of SEMANOL(76) ;

<true> if the string value of 3 is in the set of '
ASCII lower case letters, a through z;

{(false> otherwise.
a #IS-IN #SPACESET [4
<error> if & is not string convertable;

<true> if the string value of & is the ASCII
blank character.

<(false> otherwise.

#DF Syntactic-class-membership
=> <Sequence-expression> <gap> |2
<{Membership-operator> <gap> |5
<Syntactic-class-union> . i
#DF Syntactic-class-union F

=> <Syntactic-class-reference> <gap> <% < <gap> iv
<'#U'> <gap> <Syntactic-class-reference>>> #. .

#DF Syntactic-~-class-reference

=> <'<'> <gap> <Syntactic-class-name> <gap> <'>'>

a #IS <b1>
a #IS <b1> #U <b2>
a #IS <b1> #U <b2> #U ... #U <bn>
<error> if & is not string convertible, or if the
- bi are not syntactic class names appearing in the

definienda of syntactic definitions;

CASE 1: &8 is a node.

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

<true> if the syntactic class name label onr the
node, & (cf, the discussion of the
"#CONTEXT-FREE-PARSE-TREE..." operator, below)
matches one of the syntactic class names, bi;

<false> otherwise.
CASE 2: & is a string.

<true)> if there is an i <= n such that bi is the

first (reading from the left) syntactic class

name for a syntactic class containing the string

value of 3, and if faor all J (1 <= J <= 1) the

grammars which have bj as their start symbol are

unambiguous with respect to a. If the grammars

for the bj's include one which is ambiguous, the |
value is <error>;

{false> otherwise.

NOTE: Here the SEMANOL(76) processor invokes the
#CONTEXT-FREE-PARSE-TREE operator in order to
recognize the string with respect to the grammars
"started" by each of the syntactic class names,
bi, in order of increasing i.

#DF Sequence-membership

a #IS-IN b

=> <Sequence-expression> <gap>
<{Membership-operator> <gap> <Sequence-expression>

<error> if b is a SEMANOL(76) semantic
expression, and B is not a sequence;

<true> if there is an integer i such that "i
#TH-ELEMENT-IN b #EQ a " holds;

{false> otherwise.

’

T o —

SEMANOL(76) Reference Manual
III. Description of SEMANOL(T76)

#DF Case-identification
=> <Sequence-expression> <gap> <'#IS','#IS-NOT'>
<gap> <'#CASE'> <gap> <Sequence-expression> <gap>
<'#OF'> <gap> <Syntactic-class-reference> #.

a #IS #CASE n #0OF <c>

<error> if "n #IS-NOT #INTEGER #OR a #IS-~NOT
#NODE" holds;

<true> if "a #IS c¢" holds and if & is tagged with
the case number, fi (c.f., the discussion of the
"#CONTEXT-FREE~PARSE-TREE..." operator, below);

that is, node & was constructed by virtue of the
fi-th definiens in the syntactic definition named

Cy
{false> otherwise.
a #IS~-NOT #CASE n #OF <c>

<true)> (<false>) if and only if "a #IS #CASE n
#OF c" evaluates to <false)> (<true>);

<error> otherwise.

#DF Subword-relation

=> <Sequence-expression> <gap> <'#IS','#IS-NOT'>
<gap> <'#SUBWORD'> <gap> <Sequence-expression>

=> <Sequence-expression> <gap> <'#IS','#IS-NOT'>
{gap> <#NODE-IN> <gap> <Sequence-expression> #.

a #IS #SUBWORD b

51

aad 2

SEMANOL(76) Reference Manual
III. Deccription of SEMANOL(76)

<error> if & (or B) is not string convertible;
<true> if & is a substring of b (that is, b =
"bla1b2", where "b1", "a1", and "b2" are strings
-- possibly <nil> -- , and & = "ai");
<{false> otherwise.

a #IS-NOT #SUBWORD b

{true> (<false>) if and only if "a #IS #SUBWORD
b" evaluates to <false> (<true)>);

<error> otherwise.
a #IS #NODE-IN b

<error> if "a #IS-NOT #NODE #OR b #IS-NOT #NODE"
holds;

<true> if B is the "root" node of a (sub) parse
tree which contains 3 as a node;

<false> otherwise.

This is equivalent to "a #IS-IN
#SEQUENCE-OF-NODES-IN b".

a #IS-NOT #NODE-IN b

<true> (<false>) if and only if "a #IS #NODE-IN
b" evaluates to <false> (<trued>);

<error> otherwise.

This is equivalent to "a #IS-NOT-IN
#SEQUENCE-OF-NODES-IN b",

#DF Precedes-relation

=> <Sequence-expression> <gap> <'#PRECEDES'>
<gap> <Sequence-expression> <gap> <'#IN'> <gap>
<{Sequence-expression>

=> <Sequence-expression> <gap>
<'#DOES-NOT-PRECEDE'> <gap> <Sequence-expression>

52

SEMANOL(76) Reference Manual a8 |
I1I. Description of SEMANOL(76)

<gap> <'#IN'> <gap> <Sequence-expression>

- - - - - - - - -

a #PRECEDES b #IN c

<error> if neither of the following conditions
hold: (1) & is a sequence, or (2) &, b, and € are ‘
all nodes;

CASE 1 (8 is a sequence)

- — - - - - -

{false> if & (or B) is not an element cf &; ’
<true> if the ordinal position of the first
occurrence of 3 in & is less than the ordinal
position of the first occurrence of b in & (i.e.,
if "#ORDPOSIT a #IN c¢ < #ORDPOSIT b #IN c");
<false> otherwise;

CASE 2 (a, B, and & are all nodes) zé

<false) if a8 (or B) is not a node in the subtree |
of which & is the root node; 4

<true> if & appears before B in a pre-order scan
of the nodes in &;

(false> otherwise;
NOTE: This case is synonymous with the expression

"a #PRECEDES b #IN #SEQUENCE-OF-NODES~IN(c)"
which is an instance of case 1 of this relation.

#DF Quantifier-relation
=> <'"#THERE-EXISTS'> <gap> <Name> <gap> <':'>
<gap> <Bounded-interval> <'#SUCH-THAT'> <gap>
<'('> <gap> <Boolean-expression> <gap> <')'>

=> <'#THERE-EXISTS'> <gap> <Name> <gap> <'#IN'>

23

T T

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

<gap> <Sequence-expression> <#SUCH-THAT'> <gap>
<'('> <gap> <Boolean-expression> <gap> <')'>

=> <'#FOR-ALL'> <gap> <Name> <gap> <':'> <gap>
<Bounded-interval> <gap> <'#IT-IS-TRUE-THAT'>
<gap> <'('> <gap> <Boolean-expression> <gap>
<t)v>

=> <'"#FOR-ALL'> <gap> <Name> <gap> <'#IN'> <gap>
<Sequence-expression> <gap> <'('> <gap>
<Boolean-expression)> <gap> <')'>

#THERE-EXISTS b : a <= b <=z ¢ #SUCH-THAT (B)

<error> if "a #IS-NOT #INTEGER #OR c #IS-NOT
#INTEGER" holds;

{false> if "c < a" holds or if, for all integers
B, 4 <= B <= &, the expression "B[b]" evaluates
to <false> (see note);

<true> if there is an integer, B, & <= b <= @,
such that "B[b]" evaluates to <true> and, for all
integers @, & <= @ < B, "B[b]" evaluates to
<false> (see note);

<error> otherwise.

Note: B[x] is B with every occurrence of the

dummy variable name replaced with x, a constant

denoting %. Also see Chapter II, Section I.
#THERE-EXISTS b #IN ¢ #SUCH-THAT (B)

<error> if @ is not a sequence;

<false> if every element, B, of & is such that
"B[b]" evaluates to <false> (see note);

<true> if there is an element, B, of & such that
"B[b]" evaluates to <true>, and each element, 3,
preceding ® in & is such that "B[a]" evaluates to
{false> (see note);

<error> otherwise.

54 b

s’ v ik i it

#FOR-ALL b: a

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

Note: B[x] is B with every occurrence of the
dummy variable name replaced with x, a constant
denoting %¥. Also see Chapter II, Section I.

<=z b <= ¢ #IT-IS-TRUE-THAT (B)

<error> if "a #IS-NOT #INTEGER #OR b #IS-NOT
#INTEGER" holds;

<false> if there is an integer, B, & <= &, such
that "B[b]" evaluates to <false> and, for all
integers @4, 3 <= a < b, "B[d]" evaluates to
<true> (see note);

{true> if "c < a" holds or if, for all integers
b, 8 <= B <= &, the expression "B[b]" evaluates
to <true> (see note);

<error> otherwise.

More precisely, this keyword expression is
equivalent to

"#NOT #THERE-EXISTS b: a <= b <=z c¢ #SUCH-THAT
(#NOT (B))".

Note: B[x] is B with every occurrence of the
dummy variable name replaced with x, a constant
denoting %. Also see Chapter I1I, Section I.

#FOR-ALL b #IN c #IT-IS-TRUE-THAT (B)

<error> if "c #IS-NOT #SEQUENCE" holds;

<false> if there is an element, B, of & such that
"B[b]" evaluates to <false>, and each element, &,
preceding B in & is such that "B[a]" evaluates to
<true> (see note);

{true> if every element, B, of & is such that
"B[b]" evaluates to <true> (see note);

{error> otherwise.
More precisely, this keyword expression is

equivalent to "#NOT #THERE-EXISTS b #IN c
#SUCH-THAT (#NOT (B))".

55

SEMANOL(7¢) Reference Manual
III. Description of SEMANOL(76) !

_ Note: B[(x] is B with every occurrence of the ’%
; dummy variable name replaced with x, a constant |
denoting %. Also see Chapter I1I, Section I.

#DF Equality-relation

=> <Sequence-expression> <gap> <'#EQ'> <gap> ;
<Sequence-expression> A

=> <Sequence-expression> <gap> <'#NEQ'> <gap> | 4
<{Sequence-expression>

| => <Sequence-expression> <gap> <'#EQS'> <gap> |4
<{Sequence-expression>

=> <Sequence-expression> <gap> <'#NEQS'> <gap>
F | <{Sequence-expression>

=> <Sequence-expression> <gap> <'#EQN'> <gap>
<{Sequence-expression>

: => <Sequence-expression> <gap> <'#NEQN'> <gap>
E | <{Sequence-expression>

=> <Sequence-expression> <gap> <'#EQW'> <gap>
<{Sequence-expression>

=> <Sequence-expression> <gap> <'#NEQW'> <gap>
<{Sequence-expression>

=> <Sequence-expression> <gap> <'='> <gap>
{Sequence-expression>

=> <Sequence-expression> <gap> <'#N'> <gap> <'='>
<{gap> <Sequence-expression>

- - —— - - - - ———— - - —— -

a #EQ b

{true> if & and B are both the value <undefined>;

<{true> if & and b are identical string values 'i
(i.e., if "x #IS #STRING & y #IS #STRING & x #EQW
y"

);

S ———

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

a #NEQ b

a #EQS b

a #NEQS b

a #EQN b

<true> if & and ® are both <true> or are both
<false> (i.e., if "x #IS #BOOLEAN & y #IS
#BOOLEAN & x #IFF y");

<true> if 3 and B are the same identical node
(i.e., if " x #IS #NODE & y #IS #NODE & x #EQN

¥

<true> if & and B are identical sequences (i.e.,
if "x #IS #SEQUENCE & y #IS #SEQUENCE & x #EQS

¥

<false> otherwise;

{true> if "a #EQ b" evaluates to <false>;

{false> otherwise.

<error> if & (or B) is not a sequence;

<false> if the length of the two sequences is
not the same (i.e., if "#LENGTH(a) #N=
#LENGTH(b)");

<true> if & and B are both empty sequences (i.e.,
they both have length 0), or if, for 1 <= i <=
length of &, "i #TH-ELEMENT-IN a #EQ i
#TH-ELEMENT-IN b" holds;

<{false> otherwise.

<true> (<false>) if and only if "a #EQS b"
evaluates to <false> (<true>);

<error) otherwise.

<error> if & (or B) is not a node;

<true)> if & and b are the same identical node
(e.f., Chapter II, Section F "Sequences and parse

57

TP

SEMANOL(7¢) Reference Manual
III. Description of SEMANOL(76)

trees"); r

<false> otherwise.

a #NEQN b
<true> (<false>) if and only if "a #EQN b" | 8
evaluates to <false> (<true>); :

|
<error> otherwise.

a #EQW b | 4
<error> if & (or B) is not string convertible;

; {true> if the string value of & is identical to
- | the string value of b;
<false> otherwise.

a #NEQW b g
<true> (<false>) if and only if "a #EQW b" ¢
evaluates to <false> (<trued); |

x
<error> otherwise. ;
|
a=0> |
<error> if "a #IS-NOT #INTEGER #OR b #IS-NOT
#INTEGER" holds;
<{true> if the numbers denoted by the numerals &
and B are equal;
<false> otherwise.
NOTE: This operator tests for arithmetic
equality; it could be defined strictly in terms
of the numeral strings @ and B, but such a
definition seems unnecessarily obscure for the
purposes of this manual. This comment applies to
all the arithmetic operators to be discussed
below as well.
a #N= b

Synonymous with "#NOT(a = b)"; that is,

58 L

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

: <{true> (<false>) if and only if "a = b" evaluates
; to <false> (<true>);

<error> otherwise.

5' #DF Arithmetic-inequality

=> <String-expression> <gap> <Less-than-onerat-r)
<gap> <String-expression>

=> <String-expression> <gap>
;Greater-than-operator> <{gap> <String-expression>
#DF Less-than-operator
o I
=0 Q<=3 o,
#DF Greater-than-operator

| => <>

=3V >="> #,

a<b
<error> if "a #IS-NOT #INTEGER #OR b #IS-NOT
#INTEGER" holds;
F 1 <true> if the number denoted by the numeral & is
4 less than the number denoted by b;
& |
: <false> otherwise.
a<=b>

Synonymous with "#NOT(a > b)"; that is,

. {true> (<false>) if and only if "a > b" evaluates
E | to <false> (<trued>);

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

{error> otherwise.

a>b
3
{error> if "a #IS-NOT #INTEGER #OR b #IS-NOT
#INTEGER" holds;
1 {true> if the number denoted by the numeral 3 is
| greater than the number denoted by b;
F‘ <false> otherwise.
a > b

Synonymous with "#NOT(a < b)"; that is,

e | <true> (<false>) if and only if "a < b" evaluates
: to <false> (<trued);

<error> otherwise.

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

LR R XX 22222222 2222222223

Sequence Expressions

HRERERENRRBEERELEREERREREREN

#DF Sequence-expression
=> <Subsequence-expression>

=> <Sequence-concatenation>

Sequence expressions have sequences as their result values.
A SEMANOL(76) sequence is a structured object, whose elements
may be any object of any type discussed in Chapter II, Section
C "SEMANOL(76) Data Types", including sequences. However,
SEMANOL(76) sequences may not be "re-entrant" (i.e., none of
the sequence elements of a sequence may be the sequence itself,
nor may any elements of a (sequence) element of tihe sequence be
the sequence itself, etc.). The "length" of a sequence is the
number of elements it has; there exists an "empty" sequence
whose 1length is 0 -- we denote the empty sequence in this
manual by "<nilseq>", and in SEMANOL(76) by "#NILSEQ".

The elements of a sequence are strictly ordered by the
"Precedes" relation; we assign ordinal positions to the
elements of a sequence as follows: the first element of a
sequence precedes all other elements, the second precedes all
others except the first, etc.

Suppose two separate evaluations produce % and §, each of
which 1is a sequence. If "#LENGTH(x) = #LENGTH(y)" and "i
#TH-ELEMENT-IN(x) #EQ i #TH-ELEMENT-IN(y)" for all i such that
"1 <= i" and "i <= #LENGTH(x)", then % is identical to §. That
is, the identity of a sequence is completely determined by the
order and the identity of its components. Here the notion of
identity is defined in terms of the SEMANOL(76) operators for
equality (the node-, sequence~, string-, and numeric-equality
relations).

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

TR

raze

#DF Subsequence-expression

=> <'#SUBSEQUENCE~-OF-ELEMENTS'> <gap> <Name>
<gap> <'#IN'> <gap> <Sequence-concatenation>
<gap> <'#SUCH-THAT'> <gap> <'('> <gap> . _
<Boolean-expression> <gap> <')'>

=> <'#SUBEQUENCE'> <gap> <String-expression> | 8
<gap> <'#TO'> <gap> <String-expression> <gap>
<'#OF'> <gap> <Sequence-expression>

i

=> <'#INITIAL-SUBSEQ-OF-LENGTH'> <gap>
{String-expression> <gap> <'#0OF'> <gap>
<{Sequence-expression>

=> <'#TERMINAL-SUBSEQ-OF-LENGTH'> <gap>
{String-expression> <gap> <'#O0OF'> <gap>
{Sequence-expression>

#SUBSEQUENCE-OF-ELEMENTS b #IN a #SUCH-THAT (B)

<error> if "a #IS-NOT #SEQUENCE" holds, or if ,
there is an element, B, in & such that "B[b]" {
evaluates to neither <true> nor <false>; ‘

<nilseq> if there is no element, b, in & such
that "B[b]" holds;

Otherwise: §, the sequence formed by taking the
elements, B, of & such that "B[b]" holds. The
order of the elements in 3 is their order in &
(i.e., #b1 #PRECEDES b2 #IN s #IMPLIES b1
#PRECEDES b2 #IN a" holds).

Note: B[x] is B with every occurrence of the
dummy variable name replaced with x, a constant
denoting x. Also see Chapter II, Section I.

#SUBSEQUENCE m #TO n #OF a

<error> if m (or fA) is not an integer or if & is
not a sequence;

<undefined> if "m > n" or "m < 1" or "n >
#LENGTH(a)";

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

Otherwise: the subsequence of & beginning with
the fi-th element in 3 and ending with the f-th
element in 3, inclusive; that is, the sequence b
such that for every integer i in the interval 1
=i1i<=n-m+ 1, "i #TH-ELEMENT-IN b #EQ i + m _
-1 #TH-ELEMENT-IN a" holds. |

#INITIAL~-SUBSEQ-OF-LENGTH m #OF a | 4

<error> if M is not an integer or if & is not a
sequence;

<undefined> if "m > #LENGTH(a)" or "m < O";
1 <nilseq> if "m = O";

Otherwise: The sequence formed by taking as
elements, the first f elements of & in order;
i.e., the sequence, B, such that "LENGTH(b) = m"
and there exists a (possibly empty) sequence @

E | such that "b #CS c #EQ a" holds; that is for

E | every integer i in the interval 1 <= i <= m,
"i#TH-ELEMENT-IN b #EQ i #TH-ELEMENT-IN a" holds.

#TERMINAL-SUBSEQ~OF-LENGTH m #0F a

<error> if M is not an integer or if & is not a
sequence;

<undefined> if "m > #LENGTH(b)" or if "m < 0";
<nilseq> if "m = 0O";

Otherwise: The sequence formed by taking as
elements, the last f# elements of & in order;
i.e., the sequence, B, such that "LENGTH(t) = m",
and there exists a (possibly empty) seguence @
such that "¢ #CS b #EQ a" holds; that is, for
every integer i in the interval 1 <= i <= m, "i
#TH-ELEMENT-IN b #EQ
(#LENGTH(a)-m+i)#TH-ELENUNT-IN a" holds.

#DF Sequence-concatenation

‘:§ => <Sequence-constructor> <%< <gap> <'#CS'> <Lgap>
{Sequence=-constructor>>> #.

63

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

a #CS b

al #CS a2

#CS

<error> if 3 (or B) is not a sequence;

Otherwise: the sequence 8 formed by concatenating
4 and b; that is, the sequence & such that for
every i in the interval 1 <= i <= the length of
&, "i #TH-ELEMENT-IN a #EQ i #TH-ELEMENT-IN s"
holds, and for every i in the interval 1 <= i <=
the length of B, "i #TH-ELEMENT-IN b #EQ (i +
#LENGTH(a)) #TH-ELEMENT-IN s" holds.

«s+ #CS an

Synonymous with the expression "(...((al #CS a2)
#CS a3)...#CS an)"; that is, the n-fold sequence
concatenation of &1 through &@n (<error> if any of
the ai is not a sequence).

#DF Sequence-constructor

=> <'#SEQUENCE-OF'> <gap> <Syntactic-class-union>
<gap> <'#IN'> <gap> <String-expression>

=> <'#SEQUENCE-OF-NODES-IN'> <gap>
<String-expression>

=> <'#SEQUENCE-OF-NODES'> <gap> <Name> <gap>
<'#IN'> <gap> <String-expression> <gap>
<'#SUCH-THAT'> <gap> <'('> <gap>
<Boolean-expression> <gap> <')'>

=> <'#SEQUENCE-OF-ANCESTORS-OF'> <gap>
<{String-expression>

=> <String-expression> #.

#SEQUENCE-OF <ai1> #IN b

SEMANOL(76) Reference Manual
Description of SEMANOL(76)

#SEQUENCE-OF <al1> #U <a2> #U ...#U <an> #IN b

<error> if B is not a parse tree node;

Otherwise: the sequence 3 formed by taking as
elements, the nodes, Bi, (of the parse tree whose
root node is B) which have a Syntactic~-class-name
tag identical to one of the
Syntactic-class-names, ai (cf, the discussion of
the "#CONTEXT-FREE-PARSE-TREE..." operator.
below). The nodes of the parse tree B =zrc to
appear in the sequence 3 in preorder (i.e., if
the ordinal position of Bi is less than that of
Bj in 8, then bBi would be listed before Bj in a
preorder listing of the nodes of B. This
SEMANOL(76) expression is equivalent to
"#SUBSEQUENCE-OF-ELEMENTS x #IN
(#SEQUENCE-OF-NODES-IN b) #SUCH-THAT (x #IS-IN
<al> #U <a2> #U ...#U <and)".

NOTE: A preorder listing of the nodes of a parse
tree is one given by the following procedure:

1. Write a name for the root node of the
tree;

2. For each descendent node (in increasing
seg-number --i.e., left-to-right -- order),
write the preorder listing of the nodes in
the subtree having that node as root.

#SEQUENCE-OF~NODES~IN b

<error> if B is not a parse tree node;

Otherwise: the sequence, 3§, formed by taking as
elements, in preorder, the nodes of the parse
tree whose root node is b. If ®Bi, and Bj are
nodes in the parse tree B, then Bi appears before
Bj in a preorder listing of the nodes in B if and
only if the ordinal position of Bi is less than
that of Bj in the sequence, 3.

NOTE: A preorder listing of the nodes of a parse
tree is one given by the following procedure:

1. Write a name for the root node of the
tree;

SEMANOL(76) Reference Manual

,4_,‘
i

III. Description of SEMANOL(76)

2. For each descendent node (in increasing
seg-number --i.e., left-to-right -- order),
write the preorder listing of the nodes in
the subtree having that node as root.

#SEQUENCE-OF-NODES b #IN a #SUCH-THAT (B) '?

error> if & is not a parse tree node, or if |
there is a node, B, in the parse tree whose root

is a, such that B[b] evaluates to neither <true>

nor <false>;

<nilseq> if there is no node B, in the parse tree
whose root is &, such that "B[b]" holds;

Otherwise: 8, the sequence of nodes, B, taken in
preorder from the parse tree whose root is &,
such that "B(b]" holds. Thus "b1 #PRECEDES b2
#IN s #IMPLIES b1 #PRECEDES b2 #IN a" holds.

Note: B[x] is B with every occurrence of the
dummy variable name replaced with x, a constant
denoting %. Also see Chapter II, Section I.

This SEMANOL(76) expression is equivalent to
"#SUBSEQUENCE-OF-ELEMENTS b #IN
(#SEQUENCE-OF-NODES-IN a) #SUCH-THAT (B[b])".

NOTE: A preorder listing of the nodes of a parse
tree is one given by the following procedure:

1. Write a name for the root node of the
tree;

2. For each descendent node (in increasing
seg-number --i.e., left-to-right -- order),
write the preorder listing of the nodes in
the subtree having that node as root.

#SEQUENCE~OF-ANCESTORS-OF n
<error> if fi is not a node;
Otherwise: the sequence , 8, formed by taking as
elements, in preorder, those nodes ® from the

most inclusive parse tree containing B such that
"n #IS #NODE~IN b #AND n #NEQN b" holds.

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

This is equivalent to "#SEQUENCE-OF-NODES b #IN
#ROOT-NODE (n) #SUCH-THAT (n #IS #NODE-IN b #AND
n #NEQN b)"

URZ 22X 2 22 XX 2222222222222)

String-Expressions

RREREERRERRERRRREREERREREN

#DF String-expression
=> <Substring-extractor>
=> <{String-concatenation>
=> <Position-detector>
=> <Sequence-element-extractor>
=> <Seg-selector>
=> <Sum> #,.
#fDF Substring-extractor

=> <'{#LEFT'> <Sum> <gap> <'#CHARACTERS-OF'> <gap>
<String-expression>

=> <'#RIGHT'> <Sum> <gap> <'#CHARACTERS-OF'>
<gap> <String-expression>

=> <Sum> <gap> <'#TH-CHARACTER-IN'> <gap>
{String-expression>

=> <'#FIRST-CHARACTFR-IN'> <gap>
{String-expression>

=> <'#fLAST-CHARACTER-IN'> <gap>
{String-expression>

=> <'#SUBSTRING-OF-CHARACTERS'> <gap> <Sum> <gap>
<'"#TO'> <gap> <Sum> <gap> <'#OF'> <gap>

67

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

{String-expression>

=> <'#PREFIX-OF-FIRST'> <gap> <Sum> <gap> <'#IN'>
<gap> <String-expression>

=> <'#SUFFIX-OF-FIRST'> <gap> <Sum> <gap> <'#IN'>
<gap> <String-expression>

#LEFT m #CHARACTERS-OF b

3 <error> if M is not an integer or if ® is not
b | string convertible;

<undefined> if "m > #LENGTH(b)" or "m < O";

<nil> if "m = O%;

Otherwise: the string &, such that € is the
initial substring of B of length M. That is, the
string given by "#SUBSTRING-OF-CHARACTERS 1 #TO m
#iOF b".

[Examples:

"#LEFT 3 #CHARACTERS-OF ('HI-THERE!')" denotes
YHI-".

"#LEFT q #CHARACTERS-OF ('OOPS')" denotes
<undefined> if "q > 4" or if "q < O", and denotes
l'OOP" if‘ "q = 3"_]

#RIGHT m #CHARACTERS-OF b

<error> if fi is not an integer or if B is not
string convertible;

<undefined> if "m > #LENGTH(b)" or "m < 0";
<nil> if “"m = 'O

Otherwise: the string &, such that & is the
rightmost substring of B of length fi. That is,
the string given by "#SUBSTRING-OF-CHARACTERS
#LENGTH(b) = m + 1 #TO #LENGTH(b) #OF b".

[Examples:

68

S W s

A s B B Akl A S5, (5

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

"#RIGHT 3 #CHARACTERS-OF ('FEE~FI-FO-FUM')"
denotes "FUM",

"#RIGHT (#LENGTH(ix) - 1) #CHARACTERS-OF ix"
denotes <undefined> if "#LENGTH(ix) < 1", and
<nil> if "LENGTH(ix) = 1"; otherwise, it denotes
the string formed from iX by dropping its first
character.]

m #fTH-CHARACTER-IN b

<error> if M is not an integer or if B is not
string convertible;

<undefined> if "m < 1" or ™m > #LENGTH(b)";

Otherwise: &, where @ is a string of length 1

consisting of the fi-th character in B counting

from the left and starting the count at 1.

[Example:

"2 #TH-CHARACTER-IN 'pig'" denotes "i".]
#FIRST-CHARACTER-IN b

<error> if b is not string convertible;

<undefined> if B is <nil>, the empty string;

Otherwise: the leftmost character of B

[This is equivalent to "1 #TH-CHARACTER-IN b"]
#LAST-CHARACTER-IN b

error> if B is not string convertible;

<undefined> if B is <nild>, the empty string;

Otherwise: the rightmost character of b

[This is equivalent to

"(#LENGTH (b)) #TH-CHARACTER-IN b"

#SUBSTRING~OF-CHARACTERS m #TO n #OF b

69

III.

SEMANOL(76) Reference Manual
Description of SEMANOL(76)

<error> if m (or f) is not an integer or if b is
not string convertible;

<undefined> if "m > n" or "m < 1" or "n >
#LENGTH(b)";

Otherwise: & where & is the substring of ®
beginning with the fi-th character of B and ending
with the m-th character of B, inclusive (the
count is from left to right, beginning at 1).

[Example:

"#SUBSTRING-OF-CHARACTERS 2 #TO 3 #OF 'abecd'"
denotes "be".]

#PREFIX~OF-FIRST b #IN a

<error> if B (or &) is not string convertible;
<undefined> if b is not a substring of 3&;

<nil> if B is an initial substring of a or if "b
#EQW #NIL";

Otherwise: & where & is the initial substring of
% ending at (but not including) the first
character of the first occurrence of B (scanning
from the left).

[Examples:
"#PREFIX-OF-FIRST 'X' #IN 'aaXXX'" denotes "aa";
"JPREFIX-OF-FIRST ',' #IN alist" denotes the

initial substring of string alist ending just
before the first comma (if there is one).]

#SUFFIX-OF-FIRST b #IN a

<error> if B (or &) is not string convertible;
<undefined> if B is not a substring of 3&;

<nil> if the first occurrence of B in & (scanning
from the left) is a right-most substring of 3&;

a if "b #EQW #NIL";

SEMANOL(76) Reference Manual

#DF String-concatenation

a #CW b

III. Description of SEMANOL(76) b

Otherwise: @& where & is the right-most substring
of & beginning at the character immediately after
the last character of the first occurrence of B
in 3.

[(Examples: (1

"#SUFFIX-OF-FIRST 'a' #IN 'aaXXX'" denotes
TaXxxe.

"#SUFFIX-OF-FIRST ',' #IN alist" denotes the
right-most string of alist beginning just atfier
the first comma (if there is one).]

=> <Sumd> <gap> <F1KL'"#CW'> <gap> <Sum>>>

<error> if & (or B) is not string convertible;

Otherwise: & where @ is the string obtained by
concatenating a and Bb.

[Example:

"Y'A' #CW 'WFUL'" denotes "AWFUL"]

[Note: If several concatenations are specified
in an expression with no order-imposing

parenthesization, concatenation takes place from
left-to-right.]

[Note: Since all numerals are also strings, all
the string functions may be applied to them,
also.]

SEMANOL(76) Reference Manual ' h
III. Description of SEMANOL(76) ;

E #DF Position-detector - :

=> <'#SUBSTRING-POSIT-OF'> <gap> <Sum> <gap>
<'"#IN'> <gap> <String-expression>

=> <'#ORDPOSIT'> <gap> <Sum> <gap> <'#IN'> <gap>
{String-expression> #.

#SUBSTRING-POSIT-OF a #IN b
{error> if a (or B) is not string convertible;

<undefined> is 3 is not a substring of B or if "a
#EQW #NIL";

}i Otherwise: &, where & is the integer
g corresponding to the first character position at

which 3 matches (is identical to) a substring of
B.

[Example:

"#SUBSTRING-POSIT-OF 'a' #IN 'cat'" denotes "2".]
#ORDPOSIT a #IN b

<error> if B is not a sequence;

<undefined> if element & is not to be found in

sequence b (i.e., if #FOR-ALL x #IN b
#IT-IS-TRUE-THAT (x#NEQ a)" holds);

Otherwise: &, where 2 is a decimal numeral
denoting the order position of the first
occurrence of element 3 in sequence B (counting
from 1).

} SEMANOL(76) Reference Manual

' -
R > P

III. Description of SEMANOL(76)

N |

#DF Sequence-element-extractor

T e
) P,

=> <Sum> <gap> <'#TH-ELEMENT-IN'> <gap>
<String-expression>

=> <'#FIRST-ELEMENT-IN'> <gap>
{String-expression>

. 2> {'#LAST-ELEMENT-IN'> <gap> <String-expression>
: | 2> <K'#FIRST'> #U <'#LAST'> #U <<Sum> <gap>
‘ <'#TH'>>> <gap> <Name> <gap> <'#IN'> <gap> <Sum>
k| <gap> <Such-that-clause>
=> <L'#FIRST'> #U <'"#LAST'> #U <<Sum> <gap>
<'"#TH'>>> <gap> <Name> <gap> <':'> <gap>
<{Bounded-~interval> <gap> <Such-that-clause> #.
#DF Such-that-clause

=> <'{#fSUCH-THAT'> <gap> <'('> <gap>
<Boolean~expression> <gap> <')'> #.

n #TH-ELEMENT-IN b

= <error> if B is not a sequence or if A is not in
| the integer range.

<undefined> if "n < 1" or "n > #LENGTH(b)".

Otherwise: the fth element in the sequence b.
#FIRST-ELEMENT-IN b

<error> if B is not a sequence.

<undefined> if B has length 0;

Otherwise: the first element in the Sequence b.

(This is equivalent to "1 #TH-ELEMENT-IN b".]

#LAST~-ELEMENT-IN b

9

RN it it et SR ol e st

Y,

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

n #TH b #IN s

#FIRST b #IN s #SUCH-THAT(B)

<error> if B is not a sequence;
<undefined> if ® has length 0;
Otherwise: the last element in the Sequence bB.

[This is equivalent to "#LENGTH(b) #TH-ELEMENT-IN
b"-]

#SUCH-THAT (B)

<error> if 3 is not a sequence or fi is not an
integer;

<undefined> if there are fewer than h elements,
B, of & such that "B[b]" evaluates to <true>, and
all the others are such that "B[b]" evaluates to
<false>;

B, the element in & such-that "B[b]" evaluates to
<true> and there are n - 1 elements, 3a, preceding
B in @ such that "B[b]" evaluates to <true>, and
each other element d, preceding B in & is such
that "B[d]" evaluates to <false>, if there is
such a bB;

<error> otherwise.

Note: B[x] is B with every occurrence of the
dummy variable name replaced with x, a constant
denoting %. Also see Chapter II, Section I.

<error> if 8 is not a sequence.

<undefined> if every element, B, of & is such
that "B[b]" evaluate to <false>;

B, the element of & such that "B[b]" evaluates to
<true> and each element, &, preceding B in &, is

such that "B[al" evaluates to <false>, if there :
is such a b; i

{error> otherwise.

More precisely, this keyword expression is :
equivalent to "1 #TH b #IN s #SUCH-THAT (B)". ;

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

Note: B[x] is B with every occurrence of the
dummy variable name replaced with x, a constant
denoting X. Also see Chapter II, Section I.

#LAST b #IN s SUCH-THAT(B)
<error> if 3 is not a sequence.

<undefined> if every element, B, of & is such
that "B[b]" evaluates to <false>;

B, the element of @ such that "B[b]" evaluates to
<{true> and each element, 3, following b in &, is
such that "Bl[al" evaluates to <false>, if there
is such a b;

<error> otherwise.

Note: B[(x] is B with every occurrence of the
dummy variable name replaced with x, a constant
denoting %. Also see Chapter II, Section I.

n #TH b : a <= b <= ¢ #SUCH-THAT (B)

<error> if "a #IS-NOT #INTEGER #OR c #IS-NOT
#INTEGER" holds;

<undefined> if there are fewer than % integers,
B, & <=z B <= &, such that "B[b]" holds, and all
the others are such that #B[b]" evaluates to
{false>;

The minimal integer, B, & <= B <= & such that
there are fi integers, 4, 38 <= 4 <= B such that
"B[(d]" holds, and every other &, & <= & <= B is
such that "B(e]" evaluates to <false>, if there
is such a b;

{error> otherwise.

Note: B[x] is B with every occurrence of the
dummy variable name replaced with x, a constant
denoting %. Also see Chapter II, Section I.

This keyword expression is equivalent to

"n #TH b #IN sequence-of-integers(a,c) #SUCH-THAT
{ B)n'

Ty~

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

given:
#DF sequence-of-integers (a,c)

=> #ERROR #IF a #IS-NOT #INTEGER #OR c #IS-NOT . '3
#INTEGER; ‘

=> #NILSEQ #IF a > c; | §

=> \a\ #CS sequen e-of-integers (a + 1, c¢) 1
#OTHERWISE #. [

#FIRST b : a <= b <= ¢ #SUCH-THAT (B)

| <error> if "a #IS-NOT #INTEGER #OR b #IS-NOT '3
: #INTEGER" holds; £

<undefined> if every integer B, 3 <= B <= & is
such that "B[b]" evaluates to <false>;

The (minimal) integer, B, & <= B <= & such that
"B[b]" holds, and all other integers d, & <= @ <
B (if any) are such that "B[d]" evaluates to
{false>, if there is such a b;

<error> otherwise.
Note: B[x] is B with every occurrence of the
dummy variable name replaced with x, a constant
denoting %. Also see Chapter II, Section I.
More precisely, this keyword is equivalent to
"1 #TH b : a < = b €< = ¢ #SUCH-THAT(B)".

#LAST b : a <= b <=z c¢ #SUCH-THAT (B[b])

<error> if "a #IS-NOT #INTEGER #OR b #IS-NOT
#INTEGER" holds;

<undefined> if every integer B, 8 < = B < = & is
such that "B[b]" evaluates to <{false>;

the (maximal) integer, B, 3 < = B < = & such that
‘ "B[b]" holds, and all others a4, B < & < = & (if
1 any) are such that "B[d]" evaluate to <false>, if

there is such a b;

SEMANOL(76) Reference Manual

ARG PRI

III. Description of SEMANOL(76)

<error> otherwise. F
H

Note: B[x] is B with every occurrence of the
dummy variable name replaced with x, a constant i
denoting %. Also see Chapter II, Section I.

This keyword expression is equivalent to {4

"#LAST b #IN sequence-of-integers (a,c)
#SUCH-THAT(B)",

where "sequence-of-integers (a,c)" is defincu 1u

4 the explanation for "n #TH b: a < = b < = ¢
#SUCH-THAT (B)", above

T

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

#DF Seg-selector

#SEG n #fOF p

=> <'{#SEG'> <gap> <Sum> <gap> <'#OF'> <gap>
<String-expression> #.

<error> if p is not a parse tree node, or f is
not an integer;

<undefined> if node p has fi direct descendents
and "n > m" or if "n < 1";

Otherwise: The fith descendent § of node P
(counting from the left from 1). § is thus a
parse tree node, possibly a terminal one.

[Example: "Standard-name(#SEG 1 #OF(#SEG 1 #OF
stmnt))" starts at the node stfint, finds its
leftmost descendent and then, in turn, finds its
"first" descendent.]

[Note: Normally, the SEG's of a node correspond
to the set-concatenands in one of the
alternatives of the node's Syndef.]

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

#DF Sum

=> <'#INEG'> <gap> <Product>
<%<<Additive-operator> <Product>>>

=> <Product> <%<<Additive-operator> <Produyct>>>
#.

#DF Additive-operator

=> <gap> <'+','#BOR','#BXOR'> <gap>

=> <special-gap> <'-'> <special-gap> #.
#DF Special-~-gap

=> <%1<#SPACE>>

=> <{#GAP> <Special-delimiters> <#GAP> #.

Note: Also see Chapter II, Section H, "SEMANOL(76)
Arithmetic".

Integer arithmetic

#NEG a
error> if 3@ is not an integer;
Otherwise: the standard form integer numeral
which is the negation of &, in the same base as
&, That is, if 3 has a leading minus sign, it is
erased; otherwise, it is added.

a+b

<error> if a (or B) is not an integer;

Otherwise: the standard form integer numeral, &,
for the sum of numbers denoted by & and B, If
the bases of & and b differ, the base of & is the
minimum of the two bases; otherwise the base of @

79

SEMANOL(76) Reference Manual
III. Description of SEMANOL(T76)

is that of &. ’

<error> if a (or B) is not an integer;

Otherwise: the standard form integer numeral, &,
for the difference of numbers denoted by & and b.
If the bases of & and b differ, the base of % is ;
the minimum of the two bases; otherwise the base , |
of @ is that of a.

Bit-string-arithmetic

a #BOR b
<error> if 3 (or B) is not a bit-string;

Otherwise: the bit string numeral, ¢, obtained by

(1) padding with leading zeros the shorter
of & and b;

(2) constructing a result numeral @ using
bit-wise inclusive-or logic, given in the
table below.

(i-th bit in &)
0 1

(i-th bit in b)

o
o
—

1
[Example:
"110#BITS #BOR 10101#BITS" evaluates to

"10111#BITS"]

a #BXOR b
<error> if & (or B) is not a bit-string;

Otherwise: The bit string constant, &, obtained |
by 5%
1 (1) padding with leading zeros the shorter s
' of 3 and b;
| 80

R e T

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

(2) constructing a result numeral using
bit-wise exclusive-or logic, as given in the
table below:

(i-th bit in 3)

-1 0 1
i
R TR I ST
0 i 0 1
(i-th bit in ©B) H
I 1 0
[Example:

"110#BITS #BXOR 10101#BITS" evaluates to
"10011#BITS"]

#DF Product

=> <Primary> <%< <gap> <Multiplicative-eperator>
<gap> <Primary>>> .

#DF Multiplicative-operator
=> (iR
SPEQU/Y>
=> <'{#BAND'> #.

Integer arithmetic

a®bp
<error> if 3 (or B) is not an integer;

Otherwise: the standard form integer numeral, &,
for the product of numbers denoted by & and B©.
If the bases of & and B differ, the base of & is
the minimum of the two bases; otherwise the base
of & is that of a.

al/b

81

T E———
ik S e b0

.

|
SEMANOL (7€) Reference Manual [%

III. Description of SEMANOL(76) L

<error> if 3 (or B) is not an integer;

<undefined> if "#SIGN(b) =0";

Otherwise: the standard form integer numeral, &,
for the "integer portion" of the quotient of

numbers denoted by 3 and b. If the bases of 3 ;
and B differ, the base of & is the minimum of the | 3
two bases; otherwise the base of & is that of 2.

Note: This is truncated division; thus "3/2" | 8
evaluates to "1" and "(-3)/2" evaluates to "-1".

1 Bit-string-arithmetic 4

a #BAND b

<error> if & (or B) is not a bit~string;

Otherwise: the bit string constant, &, obtained

| by
| (1) padding with leading zeros the shorter
b | of & and ©®:
(2) constructing a result numeral using
bit-wise and logic as given in the table
below:
1 (i-th bit in &)
k| L B
]
Pl S NG
Oy 0 0
(i-th bit in B) | F
1 1 0 1 i
[Example:

"110#BITS #B AND 10101#BITS" evaluates to
"00100#BITS"]

- — - ——— - —— - - -

#DF Primary

=> <'('> <gap> <Expression> <gap> <')'> ;

SEMANOL(76) Reference Manual

i
’ ;
!

P III. Description of SEMANOL(76)

=> <{Semantic-def-reference>

=> <Special~function>

=> <Numeric-function>

=> <Sequence-function> {

=> <String-constant> |

=> <Numeric-constant>

=> <Boolean-constant>
| => <Sequence-constant> : A

=> <Undefined-constant>

=> <Name> #.

#DF Semantic-def-reference

E | => <Semantic-definition-name> <gap> <'('> <gap>
<Expression> <gap> <%<<Comma> <gap> <Expression>
<gap>>> <')'">

=> <'($'> <gap> <Expression> <gap> <%<<Comma>
<gap> <Expression> <gap> >> <'$)'> <gap>
{Semantic-definition-name> #. | 3

¢ @81y s0ey 8O)
i' (a8 v

<error> if there is no semantic definition in the
‘ SEMANOL(76) program with the semantic definition
f - name "c".

| Otherwise: the result of evaluating the semantic |
. definition reference as described in the |
k| discussion of <Semantic-definition> above.

83

SEMANOL(76) Reference Manual
ITII. Description of SEMANOL(76)

#DF Special-function
=> <External-function>
f: => <Assignment-function> |3
=> <File-manipulation> |

=> <Tree-function> #.

#DF External-function

=> <'#EXTERNAL-CALL-OF'> <gap>
{String-expression>

=> <'#EXTERNAL-CALL-OF'> <gap>
<{String-expression> <gap> <'#WITH-ARGUMENT'>
<gap> <'('> <gap> <Sequence-expression> < gap>
<')'> &,

#EXTERNAL-CALL~OF a

#EXTERNAL-CALL-OF a #WITH-ARGUMENT (\b1,...,b2\)

#EXTERNAL-CALL-OF a #WITH-ARGUMENT (b)
<error> if & (or Bl,...,or bBn) is not
string~convertible, or if B is not a (possibly
empty) sequence of string-convertible-objects.

<e}ror> If any error condition results from a
call to an (external) function having as its name

4 the string value of a, and as its arguments the
E | | string values of b1 through bn. An error

| condition 1includes the following: (1) the
4 ‘ external function returns a non-string result;

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

4,.<
PRYTIE LI

)
1 (2) the external function is not available in the L
environment of the executing SEMANOL(76) program £
when the call is made (i.e., the call cannot be
completed);

Otherwise: the string result of calling an

available external function having as its name |
the string value of a, and as its arguments the ;
string values of b1 through bn. ij

#DF Assignment-function

| => <'#LATEST-VALUE'> <gap> <'('> <gap>
’ <String-expression> <gap> <')'>

=> <'"#ASSIGN-LATEST-VALUE'> <gap> <'('> <gap>
<String-expression> <gap> <Comma> <gap>
<Expression> <gap> <')'> #. #.

#LATEST-VALUE (a)

<error> if & is not string-convertible;

. Otherwise: ¥, where s is the string-value of &
| and (s,%) is the most recently added pair (which
has first element s) to the global assignment

sequence.

#ASSIGN-LATEST-VALUE (a,b)

<erro»> if 3 is not string-convertible;

Otherwise: the result value is <nil>; as a side
E | effect of evaluation, the pair (s,B) is added to
| the global assignment sequence, where s is the
string-value of a.

P o

#DF File-manipulation
=> <'#INPUT'D>

85

SEMANOL(76) Reference Manual
III. Description of SEMANOL(T76)

=> <'#OUTPUT'> <gap> <'('> <gap>
{String-expression> <gap> <')'>

=> <'#GIVEN-PROGRAM'> ¢.

#INPUT #INPUT denotes a special argumentless function
3 which returns the value of a unique special
k| input variable. This variable is assigned a
E | string value, implicitly, prior to the
execution of the SEMANOL(76) program; it cannot
be modified during execution.

#GIVEN-PROGRAM #GIVEN-PROGRAM denotes a special argumentless
function which returns the value of a unique
special given-program input variable. This
variable is assigned a string value,
implicitly, prior to the execution of the
SEMANOL(76) program; it cannot be modified
during execution.

#OUTPUT (s) <errcr> if & is not string convertible;

Otherwise: #OUTPUT denotes a special function
which returns the value <nil>, and as a side
effect, concatenates § to the rightmost end of
the latest string value of a unique special
output variable, and assigns the resulting
string as the (new) latest value of the special
output variable. This variable always has the
value <nil> at the initiation of the execution
of the SEMANOL(76) program; it can only be
altered by the "#OUTPUT" function.

[Note: The exact manner in which the implicit
assignments are made to the two special input
variables depends upon the particular
SEMANOL(76) implementation, as does the exact
mechanism by which the value of the special
output variable may be inspected.]

86

R . A s ab s i s S it

e T

SEMANOL(76) Reference Manual [&
III. Description of SEMANOL(76)

#DF Tree-function

=> <'#CONTEXT-FREE-PARSE-TREE'> <gap> <'('> <gap>
<String-expression> <gap> <Comma> <gap> :
{Syntactic-class-reference> <gap> <')'> ‘

=> <'#STRING-OF-TERMINALS-OF'> <gap> <'('> <gap> ,
<String-expression> <gap> <')'> &

=> <'#PARENT-NODE'> <gap> <'('> <gap>
{String-expression> <gap> <')'>

=> <'#ROOT-NODE'> <gap> <'('> <gap>
<String-expression> <gap> <')'>

L

#CONTEXT-FREE~-PARSE~-TREE (a,)

<error> if & is not string-convertible or if b is
not a syntactic definition name for a syntactic
definition in the context free syntax section;

<error> if the grammar G(b), with start symbol b,
is ambiguous with respect to the string value of
a (See Section 3 in Appendix A);

<undefined> if the string value of a cannot be
d?rived from the start symbol b of the grammar
G(b);

Otherwise: The ordered parse tree obtained by
parsing the string value of a with respect to the
grammar G(b) to be found in the context free
syntax section. Actually, the result value of
this operation is the root node for the parse
tree, from which the rest of the tree is
accescible via other SEMANOL(76) functions.

Complete definition of the construction of the
parse tree is given in the discussion in Appendix
A.

The SEMANOL(T76) parse tree has a few extensions
over the most common notions of a parse tree;
each non-terminal node has certain special labels
or attributes: (1) syntactic class name, (2) case

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

(or definiens) number, (3) seg count, and (4)
syntactic component pairs.

Each non-terminal node corresponds to a
(sub)string of the parsed string, which belongs
to a syntactic class defined by a syntactic
definition (whose name is recorded as a label on
the node). Each of its immediate descendants
("seg"s) correspond to a syntactic set (with a
terminal or non-terminal syntactic class name)
concatenand in one of the definiens of the
definition. The segs of a node are ordered
(left~to-right), and are given numbers from 1 to
the seg-count of the node. The definiens used to
produce the descendents is labeled (by case
number) in the parent node; the total number of
segs is also labeled in the parent node.

#STRING-OF-TERMINALS-OF (a)

#ROOT-NODE(b)

<error> if & is not a parse tree node;

Otherwise: The string, x, represented by & as
described in Section 5 of the discussion in
Appendix A.

<error> if "b #IS-NOT #NODE" holds;

Otherwise: the unique node, in the
(most-inclusive) parse tree containing b, which
has no parent; i.e., that node & such that all
nodes & in the parse tree containing B have the
property that "c #IS #NODE-IN a'".

Note: A parse tree & "includes" parse tree B if
every node contained in ® is contained in a.
Also, & "properly includes" b if & includes B and
there is some node & contained in & which is not
contained in B. A parse tree is "most-inclusive"
if it is not properly included in any parse tree.

88

SEMANOL(T76) Reference Manual
III. Description of SEMANOL(76)

#PARENT-NODE(b)
<error> if "b #IS NOT #NODE" holds;
<error> if "b #EQN #ROOT-NODE(b)" holds;
Otherwise: the unique node, a, in the
(most~inclusive) parse tree containing b, for

which there is an integer 1 such that "b #EQN
#SEG i #0F a" holds.

E'i This keyword expression is equivalent to

?f "#LAST-ELEMENT-IN (#SEQUENCE-OF-ANCESTORS-OF b)".
Note: A parse tree 3 "includes" parse tree b if
every node contained in ® is contained in &.
Also, & "properly includes”" B if & includes % and
there is some node € contained in & which is not

contained in B. A parse tree is "most-inclusive"
if it is not properly included in any parse tree.

f; ; #DF Numeric-function
=> Arithmetic-function
=> Count-length-function
#DF Arithmetic-function

=> {'#ABS'> <gap> <'('> <gap> <String-expressgsion>
<gap> <')'>

=> <'"#SIGN'> <gap> <'('> <gap>
<String-expression> <gap> <')'>

=> <'#CONVERT'> <gap> <'2', '8', '10'> <gap>
<'('> <gap> <String-expression> <gap> <')'> #.

#ABS (a)

<error> if & is not an integer;

RE | 89

RNy

D NI TI s o £
(b o T 1 9-b ’ gh Tt s . Aros o N W T ey

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

#SIGN (a)

Otherwise: the standard form numeral obtained
from & by

(1) converting & to standard form, and

(2) taking & if & has no leading minus sign;
otherwise

(3) erasing the leading minus sign of &.

<error> if a is not an integer;

Otherwise: the (standard form decimal integer)
numeral given below:

"O" if "a = x" where % is a standard form
zero of the same numeric type as &;

"_1" if 3 has a leading minus sign;

"1" otherwise.

#CONVERT b (m) , where b is 2, 8, or 10

<error> if fi is not an integer;

Otherwise: the base b standard form
representation of fi.

#DF Count-length-function

#SEG-COUNT (a)

=> <'#SEG-COUNT'> <gap> <'('> <gap>
<String-expression> <gap> <')'>

=> <'#LENGTH'> <gap> <'('> <gap>
{Sequence-expression> <gap> <')'> .

<error> if & is not a parse tree node;

SEMANOL(76) Reference Manual
III. Description of SEMANOL(T76)

0 if 3 is a terminal node (i.e., if & corresponds
to one of the Syntactic set constants in the
parse of a given (sub)string -- see the
discussion of the "#CONTEXT-FREE-PARSE-TREE...®
operator, above).

Otherwise: The standard form decimal integer
numeral, n, such that 3 has n immediate
descendants in the parse tree of which & is the
root (see the discussion of the
"#CONTEXT-FREE~-PARSE-TREE..." operator, above),

#LENGTH (a)

Fé <error> if neither of the following conditions
j holds:

(1) %1 is a sequence; (2) & is string convertible.
CASE 1 (&8 is a sequence)

The standard form integer numeral n, where R is
the number of elements in &. ("0" if & is the
empty sequence <nilseq>.)

CASE 2 (& is string convertible)

The integer numeral n, where fi is the number of

characters in the string value of a ("O" if the
string value of a is <nil>).

#DF Sequence-function

=> <'#REVERSE-SEQUENCE'> <gap> <'('> <gap>
<{Sequence-expression> <gap> <')'> #.

- - - - - - - — - - -

#REVERSE-SEQUENCE (s)

g
g

<error> if 38 is not a sequence;

Otherwise:

91

SEMANOL(T76) Reference Manual
III. Description of SEMANOL(76)

<nilseq> if 3 is <nilseq> ; otherwise,

The sequence obtained by taking the elements of §
in reverse order.

#DF Undefined-constant
' => <'#UNDEFINED'> #.
#DF qulean-constant
| : ' => <'#TRUE','#FALSE'> #.
#DF Sequeace-constant
1 => <'#NILSEQ'>

=> <'\'> <gap> <Expression> <gap> <%<<Comma>
<gap> <Expression> <gap>>> <'\'> #.

#UNDEFINED <undefined>, a distinguished value.

#TRUE. {true>

#FALSE <false>

#NILSEQ The empty sequence , <nilseq>

\ a\ The sequence containing the single element, &.

Nodl g wne og800 N

The sequence containing n elements, whose i-th
element is 3&i.

[This is equivalent to
HNE&1V #CS oo #CS \an\W .l

92

AD=AU49 473 TRW DEFLNSt AND SPACE SYSTEMS GROUP REDONDO BEACH CALIF F/6 9/2
i SEMANOL (76) REFERENCE MANUAL. VOLUME II.(U)
NOV 77 F C BELZ F30602=76=C= uaaa
UNCLASSIFIED

RADC=TR=77=365-VOL=-2
END
DATE
Li.’:;g

w

M0 &
=tgk
l""—l'_;.-' ol

-
22 e pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

% SEMANOL(76) Reference Manual
4 III. Description of SEMANOL(76)

#DF String-constant

2 => <String> #.

#DF String

=> <'[']'> <%<String-character>> <'[']">

4 ' => <'#SPACE'>
=> <'#NIL'> #.
#DF String~character
=> <Printing-ascii-character> #S- <'[']' , '[[]">

=> <'[[]'> <Escape-sequence> <']'> #.
#DF Escape-sequence
=> <'[']', 'ENQ', 'FF', 'DC3', 'SUB',
*LE}, TACK', *CR', 'DCk*, *ESC',
YNUL',. "BEL";, 'SO', YNAK', ‘ES*', .
ESOHYS, UBSY - CSI*Y *SYN', *GS',
| tSTXt, 'HT', *DLE', "ETB'; *'R5',

'ETX', 'LF', 'DCI', 'CAN', 'US',
'EOT*, 'VT', 'DC2', 'EM', 'DEL'>
#DF Printing-ascii-character 1!
=> <#LETTER> |
=> <#DIGIT> 3
2> <#SPACE, '1', Yur, vgv, 14 ge,
Ty LA TR, T, FREL N,

& i - R RSE L AN RS tet %t
‘ i ' y ey po Wb e ‘

|<v' v=0’ v>" v?', ve" v[[]v'

A S O v S

o _w;“‘

e CEENENE LNTOAVRRES GNP S P a ‘e _ J

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

The string "x". The string constant, like every
other SEMANOL(76) <Symbol>, is indivisible; that
is, the evaluation of a string constant is direct
and cannot be the composition of any other

; evaluative steps. In particular, if " 'a' " is a
k. | string constant appearing in an expression in a

E | : semantic definition which has a formal parameter
named "a", the value of the string constant is
the string "a", not the value of the actual
argument associated with the formal parameter.

A special notation is used to represent
non-printing ASCII characters, and imbedded
single-quotes within a quoted string. The square
bracket characters are used to enclose the
standard ASCII name of the non-printing
character. For example, '[CR]J[LF]' denotes the
string of two characters -- ASCII carriage-return
followed by ASCII line-feed. The same square
brackets enclose the single-quote character. For
example, '[']' denotes the string consisting of
the ASCII single-quote character. Finally, it is
necessary to use the special bracket notation to
represent the "[" character, since that character
normally serves as an "escape" character for this
notation. Thus, '[[]' denotes the single "["
character; '[[]JHI]' denotes the string "[HI]".

Note that the ASCII line-feed character itself (for example)
cannot appear in a string, only the characters
[LF], which stand for the line-feed. Thus the
SEMANOL(76) end-of-line character cannot appear
in a string; that is, string constants cannot be
split across lines.

#SPACE The string consisting solely of ASCII space or
blank character.
| #NIL The empty string <nil>.
|

SEMANOL(76) Reference Manual
III. Description of SEMANOL(76)

- - - P an .. .- -

#DF Numeric-constant

=> <Integer-constant>
=> <Bit-string-constant> #. |

#DF Integer-constant

=> <Integer>
| => <Octal-integer> <'#B8'>
f; => <Binary-integer> <'#B2'>
ff => <'='> <Integer>
‘ => <'-'> <Octal-integer> <'#B8'>
=> <'-'> <Binary-integer> <'#B2'> #.
2 . #DF Integer
: => <$1<#DIGIT>> #.
i' #DF Binary-integer
b | => <$1<'07,' 1> #,
#DF Octal-integer
=> <$1€T0T, V17,127,130 Tl t5e 16 105> §,

#DF Bit-string-constant

jﬁ => <Binary-integer> <'#BITS'> #.

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

XX:::X#B8
XX:::X#B2

XX:::X#BITS

#DF Comma

Each integer numeral constant evaluates to itself
as a SEMANOL(76) string object.

The integer portion, "XX:::X", may be any string
of decimal digits, if there is no base suffix (
or octal digits if the base suffix is "#B8"; or
binary digits if the base suffix is "#B2"); no
imbedded blanks are permitted.

Each bit-string constant evaluates to itself as a
string object.

The integer portion, "XX:::X", may be any string
of binary digits (with no imbedded blanks).

Basic Symbols

=> <,

=> <"#,'> <Name> #.

#,commentary-characters

The SEMANOL(76) comma may include some optional
commentary characters for readability. WARNING:
the use of "#," must always be immediately

| TSP 8y

SEMANOL(76) Reference Manual F
III. Description of SEMANOL(76)

a1

followed by noise characters, with no gap and no
imbedded blanks. There is some danger that the
SEMANOL(76) programmer may forget the noise |
characters and/or their terminating blank, thus I
erroneously consuming the next name as noise. For {1
. example, the definition reference "blah(a#,b)" is ‘

erroneous. ‘

-y - - - - - - - - - - .-

#DF Comment |4
2> <'"M1> KF <H#ASCII #S- <'"M'O0> <K' 4,

. —c—ean- - 3

" blah "
A SEMANOL(76) comment may appear in any gap in a
SEMANOL(76) program. It is ignored during
execution of the SEMANOL(76) pragram. The first
occurrence of a double-quote after the opening
double-quote terminates the comment.
#DF gap ,

=> <#GAP>
=> <#GAP> <Special-delimiters> <#GAP> #.

#DF Special-delimiters

=> <Special-delimiter>
<$1<<#GAP><Special-delimiter>>> #.

#DF Special-delimiter
=> <{Comment> #U <End-of line> #.
| #DF End-of-line
1 z> <'[LF]'> #. 1

| - - - - - - - - - - - - - - -

? 97

A e At e e Wit M L

e L e

SEMANOL(76) Reference Manual

III. Description of SEMANOL(76)

#DF Name

The character '[LF]' partitions the SEMANOL(76)
program into a sequence of "lines", which are
substrings over the alphabet <#ASCII> #S5-
<'[LF]'>. No line may be greater than 72
characters in length.

=> <H#LETTER> <%<<#LETTER> #U <#DIGIT> #U <'-='>>>
f.

The possible meanings of names depend upon
context. Some rules concerning names are given
in Section E of Chapter II.

98

e e

SEMANOL(76) Reference Manual
Appendix A

Appendix A

The followling paragraphs are given to fill in the details
of the SEMANOL(76) implementation of the notions of grammars,
derivations, derivation- and parse-trees, syntactic components
(but also see Chapter II), and the string of terminals of any
node of a parse tree.

J1. Derivations

The derivation of a string, s, from the "start-symbol", S,
of a grammar, G(S), can best be explained by an example.

Definition (Definiens number)

#DF S => KT> <B1<K<"4+"D> KTH>>> &, (1
#DF T

=> <> (1

=D KV> 'Ry KT #, (2)
#DF V

=> <#CAP> <%<#CAP #U #DIGIT>> #. (1)

Fig. A.1. Fxample grammar (with start symbol S).

$ To begin, rewrite the grammar so that all
syntactic class names are bracketed (G(S) is in this form).
Then write the start-symbol, bracketed.

: Then we perform a direct-derivation, by (1)
choosing a bracketed Syntactic class name in the current
string; (2) choosing a definiens in the Syntactilic definition
which defines that Syntactic class name; and (3) replacing the
bracketed Syntactic class name with the chosen definiens. If
the definiens 1s a syntactic expression of the form "a #S- <

SEMANOL(76) Reference Manual

Appendix A

b1, «eey bn >", then bracket it before performing the
replacement. At step (b), there are no choices, so we perform
the only possible direct-derivation. We also record the
(Syntactic class name; definiens number) pair used to make the
derivation.

Step .(¢): After performing each direct-derivation, we
check for spontaneous-derivations, which must be performed if
there are any occurrences of the #U, %, or %1 operators.
Corresponding to each occurrence of such an operator, 0, is an
"0-induced” spontaneous-derivation. (If any derivation
contains more than one such operator occurrence, they may be
nested by the parenthesizing brackets; in that case the induced
spontaneous derivations are done "from the outside inward".)
At step (c), a %1-induced spontaneous derivation is performed.
Where the expression <%1<a>> appears, we choose a positive
integer, n, and replace the expression with n occurrences of
<a>; at step (c), n=1.

Spontaneous derivations must be performed in left to right
order (unless the inducing operators are nested), and all
inducing operators must be eliminated before proceeding to the
next direct-derivation. When all such operators have been
eliminated the direct-derivation and the subsequent chain of
spontaneous derivations (if any) constitute a complete

derivation step. Thus steps (b & c) constitute a complete
derivation step.

Step (d): Perform a direct derivation, replacing the
second occurrence of <T> with its second definiens, <V> <'¥')
ST, Since this derivation introduces none of the inducing
operators, this is a complete derivation step.

Step (e): Replace the first occurrence of <T> with its
first definiens, <V>. Complete derivation step.

f: Replace the first occurrence of <V> with its
only definiens. This introduces two (nested) inducing
operators, % and #U. Thus we are forced to perform a %-induced
spontaneous derivation, followed by a #U-induced spontaneous
derivation:

|
4

| L b S &

| SEMANOL(76) Reference Manual
Appendix A
(a) <S>
- '
1(551)
} v
| (b) <T><F1KLT+ K>
i]
! |
1(%1)
& v
4 (e) <TX<'+'X<T>
]
1]
1(T;2)
{ v
; (d) <T>CT4+">KU>C T #1XCT>
[}
3 [}
| F(T;1)
v
' () <VUDX'4'>KVU>CT#XKT>
| |
| 1(V31)
IR v
| (f) <#CAP><P<#CAP #U #DIGIT>D><'+'>KV>C ' #1X<T)
? |
E 1 (%)
i 5
2 (g) <#CAP><#CAP #U #DIGIT><#CAP #U #DIGIT><'+'><KV>'#1><T>
E |
I'
|
| Fig. A.2. Derivation of String S1 (part 1)

nr 101

b i B e e e

SEMANOL(76) Reference Manual

Appendix A

(g) <#CAP><#CAP #U #DIGIT><#CAP #U #DIGIT><'+><V>L'#'><T>
]

]
1 (#U(twice))
v
(h) <#CAP>S<#DIGIT><#DIGIT><"+"'><KVU>< ' *#>XT>
[}

]
%‘ 1(v;1)
| v
i (1) <#CAP>S<#DIGIT><#DIGIT><'+'><#CAP><%<#CAP #U #DIGIT>>
k| H CTEYSLTD
| V(%)
4 v
3 (j) <#CAP><#DIGIT><#DIGIT><'+'><#CAP><'*#'><T>
]
|
$(T:1)
\'
(k) <#CAP><#DIGIT><#DIGIT><"+"'><#CAP>'¥*'><V>
|
E ['
: 1(Vs1)
! v
| (1) <#CAP><#DIGIT><#DIGIT><"+"'><#CAP>'*'>{#CAP>
i <%<#CAP#U#DIGIT>>
1 (%)
v
(m) <#CAP> <#DIGIT> <#DIGIT> <'+'> <#CAP>'¥'>#CAP>
]]] 1] i t
] | | | | | |
k| \'A v v v v v v
; (n) A 1 2 + B * C = string S1
| Flg. A.2. Derivation of String st (part 2)
‘f Step _(g): If the expression <%<a>> appears, we choose a 13
: | non-negative integer n and replace the expression by n : |
‘ occurrences of saY; here n = 2, This 1is a %-induced |
spontaneous derivation. F

Step (h): If any of the expressions <al #U a2> ,..., <al ,
#U...#U an> appear, choose a positive integer m (<=n) and &
replace the expression with <am>. Here m=2 ls chosen twice, E

102

.SEMANOL(T76) Refcrence Manual

Appendix A

and two #U-induced spontaneous derivations are performed.

There are no inducing operators left. Thus steps (f-h)
constitute a complete derivation step.

Steps (i thru m): Proceed as discussed above, until there

are no more Syntactic class names and no more inducing ;
operators in the most recent string. All bracketed expressions
will contain Syntactic set constants. This condition is known

as dgx:i!atlguLLLMlﬂﬁlm

Step (n): The terminal derivation is performed by

selecting a string from the set denoted by each Syntactic Set

3 Constant and replacing the corresponding Set Constant with its
E | string.

Qur derivation is complete.

Note that what we have done here is to describe a method
for producing members of the set denoted by the start-symbol.

The strings constructed in any derivation (e.g., that of
Fig. A.2) are called sentential forms. Each lettered line of
Fig. A.2 1is a sentential form. Only the last sentential form
in a derivation is in the 1language generated by the

start-symbol. Sentential-forms which contain any of the
inducing operators, %, %1, or #U, are called temporary forms.
The rest are called permanent forms.

There are some special amendments to and constraints upon
the terminal derivation:

(1) #s-

Suppose the grammar of the above example had the following
syntactic definition for "V" rather than the one give above:

V => <#CAP> <% <#CAP #U #DIGIT>> #S- <'A12'>

(This says that no derivation may produce "A12" from the
syntactic class V). If the sample derivation were repeated with
the amended grammar, the sentential form at line (m) would be:

(m') < <#CAP>ZX#DIGIT><#DIGIT> #S- <'Ai2'>>

E <'+'> <KK{#CAP> #S- <'A12'>>
- <T1¥15 CKHCAP> #S- <'A12'>>
g There are five "bracketed components" of (m'):

103

SEMANOL(76) Reference Manual

Appendix A ‘

(1) <<#CAP><#DIGIT><#DIGIT>#S~<'A12'>>
(2) <'+">

(3) <<K#CAP>#S-<'A12'>>

(4) <rér

(5) <<#CAP>#S=<'"A12'>>

Bracketed components (1), (3), and (5) are said to be "#S-
conditioned"; trhe selection of strings from the syntactic set
constants in each bracketed component must be such that the
resultant "component string" is not among those listed in the
#S~ condition (the set of strings following the "#3S-").

For example, the string S1 of Fig. A.2 would no longer be
derivable from S, since "A12" is specificallv excluded from
syntactic cldss "V". However the string "A13+B¥C" is derivuble
from either the original or the modified erammar.

;;. 2. Some Special Cases

Define the relation "directlv-derives" or -> as follows: A
-> B if and onlv if A and B are vermanent forms and there is a
single complete derivation step (or a terminal derivation)
which (given A) will oproduce B. This relation is understood to
be relative to the particular grammar given in a particular
Context Free Syntax Section: also if a denotes A and b denotes
B and A -> B then we sav a -> b. For example. in Fig. A.2. (a)
=>» (e): (e¢) => (d): (d) => (e): (e) => (h): (h) => (1): (1) =>
(k): (k) => (m): and (m) -=> (n). No other pairs of line
letters are in the relation.

Define the relation "derives" or ¥#-> as the transitive
closure of <=>: that is A *-> B if and onlv if A => B or there
exist permanent forms al. a2. a3.....an such that A =-> a1l =>
a2...=-> an => B. (Also. if a denotes A and b denotes B and A
#_> B. then a *-> b).

Thus in Fig. A.2., <S> %_.> "pA124B%*C" or eauivalentlv (a)
®_.> (n): also (a) *-> (h): (d) *-> (k): etc.

Let "right (c)" denote the right-most character of the
string ¢ (if ¢ is not the empty word: and c¢ otherwise). Let
"left (c)" be defined svmmetrically.

If S 1is the start-symbol of a grammar of the context free
svyntax =section, and

k| 104

SEMANOL(76) Reference Manual

Appendix A

|

(1) <s> #> ABC *-> abec ; and
(2) A *_->a; B %*->b; C *->c; and
- CASE 1 :
(3) B is "<#DECNUM>"
or
B is "<#NAT-NOS>" i

E then left(c) may not be an ASCII digit (from the set named
(#DIGIT).

CASE 2
(3) B is "<#GAP>"

then 1left(c) may not be an ASCII blank character; and b may be i‘
<nil> only if right(a) and 1left(c) are not ©both ASCII £

alphanumeric characters.

As an example of the #GAP case, recall the definition of
n-place set concatenation, specified in SEMANOL(76) by
<b1><b2>...<bn>, where the bi are syntactic expressions
denoting sets of strings. The SEMANOL(76) constant
<b1><b2>...<bn> denotes the set of strings A={ a :
a=¥a1a2...an" and "at* 1s 1in B1: T"ad®™ 18 In B2i...; "an™ iz In
Bn}.

” " "

Normally, if the empty string <nil> is in ®Bi (1<i<n) then A
contains

azala2,..a(i-1)<nil>a(i+1)...an
zala2...a(i-1)a(i+1)...an.

However, supnose that bi is the syntactic expression #GAP.
Then A contains a = ala2...a(i-1)<nil>a(i+1)...an if and only
if rignt (a1a2...a(i-1)) is not alphanumeric or left
(a(i+1)...an) is not alphanumeric.

. :
1 3. Ambiguity
= A grammar in the context free syntax section is ambiguous

4
. 3 if there exist two different derivations for any string in the
! i language of the grammar. A grammar, G(S), is ambiguous with

105

SEMANOL(76) Reference Manual { ii

Appendix A r

respect to a particular string if there exist two different
: derivations for that string from the start symbol S of the
: grammar.

If the expression "#CONTEXT-FREE~PARSE-TREE(S,p)" is i
evaluated, where G(S) is ambiguous with respect to the string
value of p, the result is <error>, as described above.

Y4, Derivation and Parse Trees .

From the list of derivations in Fig. A.2 we can construct a
\ tree representation of the derivation process. Fig. A.3 shows
[the first three steps in the construction of such a derivation
; tree.

Note that only the permanent forms (a), (e¢), (d), (e), (h),
(j), (k), (m), and (n) are reflected in the construction of the
derivation tree (although the "definiens number" of each direct
derivation 1is also recorded). Each addition to the derivation
tree (begun in Fig. A.3 (a)) corresponds to a complete
derivation step in the derivation of Fig. A.2.

Step (a). The "parent"™ or "root" node is labeled with the
start-symbol.

E | Steps (b-c). The "immediate descendent"™ nodes of any
; i parent are labeled with the syntactic class names obtained from
- the parent by a complete derivation step. The "definiens
number" used in the direct derivation (for that step) is
appended to the parent node's label.

Step (d). The process is repeated for the next complete
derivation step. Fig. A.4 shows the derivation tree "up to
terminal nodes".

The Interpreter uses the Context-Free Syntax Section to

programs rather than to generate them. However, in

the recognition process, a parse tree is formed whose basic
structure is that of the derivation tree.

In terms of parsing a given string the following
interpretations may be made regarding certain derivation rules
given above:

E | 1. A substring which 1is parsed by virtue of a definiens
: containing the operators #U, %, or %1, will produce a single
level in the subtree corresponding to the definiens (i.e.,
| Levels are added to the parse tree only for explicitly named
| syntactic classes; put another way, temporary forms are not

106

e —

SEMANOL(76) Reference Manual

Appendix A

reflected in the parse tree).

H
&
¢
8
¥
{

& 2 The special case Syntactic set constants #DECNUM and !
#NAT-NOS which are used to parse a a substring ai...an will i
"oconsume" all the consecutive numeric digits of that portion of

the overall string being parsed (i.e., character a(n+1) will |
never be an ASCII digit). Similary, if #GAP is used to parse |
"aj,..an", character "a(n+1)" will never be an ASCII blank ‘

character. Furthermore "ai...an" can never be <nil> if both
characters "a(i-1)" and "a(n+1)" are alphanumeric. i

iF 107

! SEMANOL(76) Reference Manual
"
Appendix A
E
! ‘
i
E oS
; <'4+'>
' <'*l>
E |
E | Fig. A.3 Construction of a Derivation Tree
E | <#CAP> <#DIGIT> it { Vil
k| <#DIGIT>
E | 4
. <#CAP> <#CAP>
'A' 11' '2' t
; 'nl 'C' -
1
1 Fig. A.Y4 Derivation Tree "up to Terminal Nodes"
]

108

SEMANOL(76) Reference Manual

Appendix A

5. The string of terminals of a node

Now we can write the derived string by tracing the tree in
"preorder", For each immediate descendent di of the parent
. node (<i=1,...> 1in 1left to right order), if di is a terminal
node write down its associated string; otherwise trace the
subtree of di, using di as the parent. The string thus written
is the one represented by the derivation tree.

In a similar manner, each non-terminal node corresponds to

a particular (sub)string occurrence of the derived string. See

Fig. A.4: the first descendent of the parent node can
- represent the initial substring "A12" of S1; the second
L |l descendent of the parent represents the substring "+"; the
kit third represents "B¥C".

T T

Note that the parse tree does not contain the strings of
E | terminals themselves. Every node and the string of terminals
1 it represents are separate and distinct; one can obtain the
string from the node by using the "#STRING-OF-TERMINALS-~OF..."
operator as described above.

109

R 2 AT vt o AT P " PO 2
e il i o sk Do

T L R SO

INDEX

1 27, 93
" 93, 97
93 i
#. 24 |
$ 93

$) 83
% 93 "
% 31
& 42, 93 r

?j: (310 ggv 53, 5"’ 62v 6“, 73, 821 83’ 8"1 851 86, 87’ 89, 90,

($ 83 i

) 31, 37, 53, 54, 62, 64, 73, 82, 83, 84, 85, 86, 87, 89, 90,
91, 93 |

E * 81, 93
. + 79, 93
, 93, 96 |
;f - 79, 93, 94, 95 f4
1 . 93 1
i / 81, 93
1 . 21, 23, 24, 29, 35, 53, 54, 73, 93 i
1 ; 38, 93
< 32, 49, 93 é
: <= 25 :
; s 27, 56, 93 ia
1 => 29, 37, 38 |
i

i

index-1

INDEX

> 32, 49, 93
? 93
e 93
T
_ [3
1 { 9u
['] 93
[ACK] 93
[BEL] 93
[BS] 93
| [CAN] 93
' [CR] 93
[pc2] 93
1 [DC3] 93
1 [Dcu] 93
1 [DCI] 93
i% [DEL] 93
1 [DLE] 93
[EM] 93
| [ENQ] 93
1 [EOT] 93 |
[ESC] 93
[ETB] 93
{ (ETX] 93
(FF] 93
[FS] 93

index=2

e e

[GS] 93
[HT] 93
[LF] 93
[NAK] 93
[NUL] 93
[RS] 93
[s1] 93
[SoH] 93
[s0] 93
[sTX] 93
[suB] 93
[SYN] 93
[us] 93
[vrl 93
(1 93

\ 92, 94
| 94

1 31, 94
} 94

~ gy

— 94
#, 96
#,Name 96
. 21, 23, 29, 35, 39
#ABS 89

i s S S e RO T e

INDEX

#AND 42

#ASCII 32
#ASSIGN-LATEST-VALUE 85
#ASSIGN-VALUE 27

#B2 95

#B8 95

#BAND 81

#BEGIN 25

#BIT-STRING 46

#BITS 95

#BOOLEAN 46

#BOR 79

#BXOR 79

#CAP 32, 48

#CASE 51

#CHARACTERS-OF 67
#COMPUTE 27
#CONTEXT-FREE-PARSE-TREE 87
#CONTEXT-FREE~-SYNTAX 29
#CONTROL-COMMANDS 24
#CONVERT 89, 90

#CS 63

#CW 71

#DECLARE-GLOBAL 23
#DECLARE-SYNTACTIC~COMPONENT 21
#DECNUM 32

index-U4

e e

.

#DF 29, 35, 38
#DIGIT 32, 48, 93
#D0O 25
#DOES-NOT-PRECEDE 53
#EMPTYSET 32

#END 25

#EQ 56

#EQN 56

#EQS 56

#EQW 56

#ERROR 41
#EXTERNAL-CALL-OF 84
#FALSE 92

#FIRST 73
#FIRST-CHARACTER-IN 67
#FIRST-ELEMENT-IN 73
#FOR-ALL 54

#GAP 32
#GIVEN-PROGRAM 86
#IF 25, 38

#IFF 42

#IMPLIES 42

#IN 52, 53, 54, 62, 64, 68, T2, T3
#INITIAL-SUBSEQ-OF-LENGTH 62

#INPUT 85

i

#INTEGER 46

#IS 45, 51

#IS-IN 45

#IS-NOT 45, 51
#IS-NOT-IN 45
#IT-IS-TRUE-THAT 54
#LAST 73
#LAST-CHARACTER-IN 67
#LAST-ELEMENT-IN 73
#LATEST-VALUE 85
#LEFT 67

#LENGTH 90

#LETTER 32, 48, 93
#LOWCASE 32, 48

#N 56

#N= 56

#NAT-NOS 32

#NEG 79

#NEQ 56

#NEQN 56

#NEQS 56

#NEQW 56

#NIL 93

#NILSEQ 92

#NILSET 32

#NODE 46

index-6

e

#NODE-IN 51

#NOT 42

#OF 51, 62, 68, 78

#OR 42

#ORDPOSIT 72

#OTHERWISE 38

#OUTPUT 86

#PARENT-NODE 87
#PRECEDES 52
#PREFIX-OF-FIRST 68
#PROC-DF 39
#RETURN-WITH-VALUE 27
#REVERSE~-SEQUENCE 91
#RIGHT 67

#ROOT-NODE 87

#S- 31

#SEG 78

#SEG-COUNT 90
#SEMANTIC-DEFINITIONS 35
#SEQUENCE 46
#SEQUENCE-OF 64
#SEQUENCE-OF-ANCESTORS-OF 64
#SEQUENCE-OF-NODES 64
#SEQUENCE-OF-NODES~-IN 64
#SIGN 89

index-T7

INDEX

#SPACE 93

#SPACESET 32, 48

#STOP 41

#STRING 46
#STRING-OF-TERMINALS-OF 87
#SUBSEQUENCE 62
#SUBSEQUENCE-OF-ELEMENTS 62
#SUBSTRING-OF-CHARACTERS 68
#SUBSTRING-POSIT-GF 72
#SUBWORD 51

#SUCH-THAT 53, 54, 62, 64, 73
#SUFFIX-OF-FIRST 68
#TERMINAL-SUBSEQ-OF-LENGTH 62
#TH 73

#TH-CHARACTER-IN 67
#TH-ELEMENT-IN 73

#THEN 25

#THERE-EXISTS 53, 54

#TO0 62, 68

#TRUE 92

#U 3

#UNDEFINED 46, 92

#WHILE 25

#WITH-ARGUMENT 81U

10 89

2 89

index-8

copaile s el

INDEX

A]
.

o
o

5 89 ?
<Additive-operator> 79 |

<Arithmetic-function> 89

<Arithmetic-inequality> 59 ‘
4 <Assignment-function> 85
<{Binary-integer> 95
<Bit-string-constant> 95 i
<Boolean-constant> 92
<Boolean-expression> 42 {
<Boolean-primary> 42 |
<{Bounded-interval> 25 |
<Case-identification> 51 I
{Character-identification> A7
<Comma> 96
{Comment> 97
<Compound-statement> 25
{Conditional-definiens> 38
<Conjunction> A42
<{Context-free-syntax> 29
<Control-section> 24
<{Count-length-function> 90
i - <Declaration-section> 21

<Declaration> 21

{Declare-global-variables> 23

<Declare-syntactic-components> 21

index-9

bl b | M e e

» .V*m <

=y

INDEX

<Definiendum> 37
<Definition-by-cases> 38
<Disjunction> 42
<End-of-1line> 97
<Equality-relation> 56
<Escape-sequence> 93
<Expression> M1
<External-function> 84
<File-manipulation> 85
{For-all-clause> 25
<For-statement> 2%
<Formal-param-name> 37
<Functional-definition> 35
<gap> 97
<Greater-than-operator> 59
<Implication> 42
<Integer-constant> 95
<Integer> 95
<Less-than-operator> 59
<{Membership-operator> U5
{Membership-relation> Ul
<Multiplicative-operator> 81
<{Name> 98

<{Negation> U2
<{Numeric-constant> 95

{Numeric-~function> 89

index-10

<Octal-integer> 95

<Optional-context-free-syntax> 19
<Optional-semantic-definition-se19
<Position-detector> T2
<Precedes-relation> 52

{Primary> 82
{Printing-ascii-character> 93
<Procedural-definition> 39
<Product> 81
<Quantifier-relation> 53
<Relational-expression> Ui
<Seg-selector> 78
<SEMANOL-%6-program> 19
{Semantic-def-reference> 83
{Semantic-definition-name> 37
<{Semantic-definition-section> 35
<{Semantic-definition> 35
<{Sequence-concateration> 63
{Sequence-constant> 92
{Sequence~constructor> 64
<{Sequence-element-extractor> T3
<Sequence-expression> 61
{Sequence~function> 91

{Sequence-membership> 50

{Set~-constant> U8

index=-11

INDEX

<Simple-definition> 36

{Simple-statement> 27

<{Special-delimiter> 97 .
{Special-delimiters> 97

<Special-function> 84

<Special-gap> 79

<{String-character> 93 ;
<{String-concatenation> 71 ;
E | <{String-constant> 93

i <String-expression> 67

;1 <String> 93
<{Subsequence-expression> 62
<Substring-extractor> 67
<{Subword-relation> 51
<Such-that-clause> T3 ’
<Sum> 79

<Syntactic-class-membership> 49

<{Syntactic~class-name> 29

<Syntactic-class-reference> 49

<Syntactic~-class-union> 49 !
{Syntactic-definition> 29

{Syntactic-expression> 31

<Syntactic-primary> 32
{Syntactic-set-constant> 32

<Syntactic-term> 31

3. {Tree-function> 87

‘§f index-12 '
|

INDEX

<Type-identification> 46
<Type> 46
<Unbounded-interval> 25
‘ . <Unconditional-definiens> 37
i' <Undefined-constant> 92

index=13

